English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 1013-1027 DOI: 10.7536/PC171104 前一篇   后一篇

• 综述 •

纳滤膜新型材料研究

赵凤阳1, 姜永健1*, 刘涛2, 叶纯纯3   

  1. 1. 辽宁石油化工大学 抚顺 113001;
    2. 杭州水处理技术研究开发中心有限公司 杭州 310012;
    3. 浙江大学高分子科学与工程学系 教育部高分子合成与功能构造重点实验室 杭州 310027
  • 收稿日期:2017-11-07 修回日期:2017-12-19 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 姜永健 E-mail:a406280751@163.com
  • 基金资助:
    辽宁省科技厅博士启动项目(No.20170520259)、辽宁省教育厅科研项目(No.L2017LQN003,L2017LQN036,L2017LQN014)和辽宁石油化工大学引进人才科研启动基金项目(No.2016XJJ-071,2016XJJ-088)资助

Nanofiltration Membrane Based on Novel Materials

Fengyang Zhao1, Yongjian Jiang1*, Tao Liu2, Chunchun Ye3   

  1. 1. Liaoning Shihua University, Fushun 113001, China;
    2. Hangzhou Water Treatment Technology Development Center Co., Ltd, Hangzhou 310012, China;
    3. Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2017-11-07 Revised:2017-12-19 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by Fundamental Research Funds for the Doctors of Liaoning Provincial Natural Science Foundation(No. 20170520259), the Scientific Research Fund of Liaoning Provincial Education Department (No. L2017LQN003, L2017LQN036, L2017LQN014), and the Talent Scientific Research Fund of LSHU(No. 2016XJJ-071, 2016XJJ-088).
纳滤是一种介于超滤与反渗透之间的重要膜分离过程,具有工作压力低、无相转变及分离效率高等独特优势。膜污染及渗透性/选择性之间的平衡是纳滤膜在使用和研发过程中面临的亟待解决的两个主要问题。膜材料是膜与膜分离技术的核心,开发新型的纳滤膜材料是解决上述问题的重要手段。本文从新型纳滤膜材料的设计与选择的角度出发,总结归纳了近年来新型材料在纳滤膜的制备与应用研究现状,包括新型有机纳滤膜材料、新型无机纳滤膜材料和新型有机-无机杂化纳滤膜材料三个方面,拓展了对纳滤膜材料的认知,探讨了新型纳滤膜材料的共性及其存在的主要问题,并对未来高性能纳滤膜材料的研制方向进行了展望。
Nanofiltration(NF) separation technology, whose characteristics fall between ultrafiltration and reverse osmosis, makes up one of the most significant categories for intrinsic advantages such as low operating pressure, no phase transition and high-energy efficiency. However, membrane fouling and "trade-off" between permeability/selectivity are two main challenges to the application of NF membrane and design of new NF membranes. Membrane materials play the pivotal role in any membrane-based technologies. Therefore, the exploitation of novel membrane materials has been a major methodology to fabricate membranes with optimum performances, high-energy efficiency and relatively low cost. In this review, the scientific and technological advances in development of promising materials for NF membrane preparation and application in recent years are outlined. The materials can be classified into three types, including novel organic NF membrane materials, novel inorganic NF membrane materials, and novel organic-inorganic hybrid NF membrane materials, according to the membrane structures and the distribution and variety of materials in membranes. In addition, the universal characters of these new NF membrane materials as well as their respective main problems are set forth. Finally, the challenges and directions for future research in developing new promising NF membrane materials to achieve efficient means in commercialization are also prospected.
Contents
1 Introduction
2 Novel organic nanofiltration membrane materials
2.1 Novel organic bulk materials
2.2 Novel organic modified materials
3 Novel inorganic nanofiltration membrane materials
3.1 Graphene and its derivatives
3.2 Other novel inorganic nanofiltration membrane materials
4 Novel organic-inorganic composite nanofiltration membrane materials
4.1 Characters of organic-inorganic composite nanofiltration membranes
4.2 Types of organic-inorganic composite nanofiltration membranes
5 Conclusion and outlook

中图分类号: 

()
[1] Semiat R. Environ. Sci. Technol., 2008, 42:8193.
[2] Mekonnen M M, Hoekstra A Y. Sci. Adv., 2016, 2:e1500323.
[3] Elimelech M, Phillip W A. Science, 2011, 333:712.
[4] Grant S B, Saphores J D, Feldman D L, Hamilton A J, Fletcher T D, Cook P L M, Stewardson M, Sanders B F, Levin L A, Ambrose R F, Deletic A, Brown R, Jiang S C, Rosso D, Cooper W J, Marusic I. Science, 2012, 337:681.
[5] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Nature, 2008, 452(7185):301.
[6] 徐又一(Xu Y Y),徐志康(Xu Z K). 高分子膜材料(Polymer Membrane Materials). 北京:化学工业出版社(Beijing:Chemical Industry Press),2005.
[7] Eriksson P. Environ. Prog., 1988, 7(1):58.
[8] Bruggen B V, Schaep J, Wilms D, Vandecasteele C. J. Membr. Sci., 1999, 156(1):29.
[9] Fang W X, Shi L, Wang R. J. Membr. Sci., 2014, 468(20):52.
[10] Cheng X Q, Liu Y Y, Guo Z H, Shao L. J. Membr. Sci., 2015, 493:156.
[11] Al-Rashdi B, Somerfield C, Hilal N. Sep. Purif. Rev., 2011, 40(3):209.
[12] Lau W J, Ismail A F. Desalination, 2009, 245:321.
[13] 赵黎明(Zhao L M). 膜分离技术在食品发酵工业中的应用(Application of Membrane Separation Technology in the Food Fermentation Industry). 北京:中国纺织出版社(Beijing:China Textile & Apparel Press),2011.
[14] Zhang R N, Liu Y M, He M R, Su Y L, Zhao X T, Elimelech M, Jiang Z Y, Chem. Soc. Rev., 2016, 45:5888.
[15] Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D, Science, 2017, 356(6343):eaab0530.
[16] Mohammad A W, Teowa Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Desalination, 2015, 356:226.
[17] Koros W J, Zhang C. Nat. Mater., 2017, 16:289.
[18] Fane A G, Wang R, Hu M X. Angew. Chem. Int. Ed., 2015, 54(11):3368.
[19] Lee A, Elam J W, Darling S B. Environ. Sci.:Water Res. Technol., 2016, 2:17.
[20] Werber J R, Osuji C O, Elimelech M. Nat. Rev. Mater., 2016, 1(5):16018.
[21] 李祥(Li X), 张忠国(Zhang Z G), 任晓晶(Ren X J), 李继定(Li J D). 化工进展(Chemical Industry and Engineering Progress), 2014, 33(5), 1210.
[22] 赵凤阳(Zhao F Y), 秘一芳(Mi Y F), 安全福(An Q F), 高从堦(Gao C J). 化学进展(Progress in Chemistry), 2016, 28(4):541.
[23] Lau W J, Ismail A F, Misdan N, Kassim M A, Desalination, 2012, 287:190.
[24] Xiang J, Xie Z L, Hoang M, Zhang K S, Desalination, 2013, 315(8):156.
[25] Xiang J, Xie Z L, Hoang M, Ng D, Zhang K S, J. Membr. Sci., 2014, 465:34.
[26] Jin J B, Liu D Q, Zhang D D, Yin Y H, Zhao X Y, Zhang Y F, J. Appl. Polym. Sci., 2015, 135(11):41620.
[27] An Q F, Li F, Ji Y L, Chen H L, J. Membr. Sci., 2011, 367:158.
[28] Mi Y F, Zhao Q, Ji Y L, An Q F, Gao C J, J. Membr. Sci., 2015, 490:311.
[29] Cheng X Q, Shao L, Lau C H, J. Membr. Sci., 2015, 476:95.
[30] Zhang R N, Li Y F, Su Y L, Zhao X T, Liu Y N, Fan X C, Ma T Y, Jiang Z Y, J. Mater. Chem. A, 2016, 4:7892.
[31] Zhao Q, An Q F, Ji Y L, Qian J W, Gao C J. J. Membr. Sci., 2011, 379(1/2):19.
[32] 计艳丽(Ji Y L), 安全福(An Q F), 钱锦文(Qian J W), 陈欢林(Chen H L), 高从堦(Gao C J). 化学进展(Progress in Chemistry), 2010, 22(1):119.
[33] Ji Y L, An Q F, Zhao Q, Chen H L, Qian J W, Gao C J. J. Membr. Sci., 2010, 357(1/2):80.
[34] Zhao Q, Ji Y L, Wu J K, Shao L L, An Q F, Gao C J. RSC Adv., 2014, 4(95):52808.
[35] Ye C C, Zhao F Y, Wu J K, Weng X D, Zheng P Y, Mi Y F, An Q F, Gao C J. Chem. Eng. J., 2017, 307:526.
[36] 慈吉良(Ci J L), 康宏亮(Kang H L), 刘晨光(Liu C G), 贺爱华(He A H), 刘瑞刚(Liu R G). 化学进展(Progress in Chemistry), 2015, 27(9):1198.
[37] Li Q, Imbrogno J, Belfort G, Wang X L. J. Appl. Polym. Sci., 2015, 132(21):41781.
[38] Ji Y L, Zhao Q, An Q F, Shao L L, Lee K R, Xu Z K, Gao C J. J. Mater. Chem. A, 2013, 1(39):12213.
[39] An Q F, Ji Y L, Hung W S, Lee K R, Gao C J. Macromolecules, 2013, 46(46):2228.
[40] 张培斌(Zhang P B), 唐安琪(Tang A Q), 路景驭(Lu J Y), 朱宝库(Zhu B K), 朱利平(Zhu L P). 功能高分子学报(Journal of Founctional Polymers),2017, 30(1):1.
[41] Hong S K, Na Y S, Choi S H, Song I T, Kim W Y, Lee H S. Adv. Funct. Mater., 2012, 22:4711.
[42] Lee H S, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318:426.
[43] Li X L, Zhu L P, Jiang J H, Yi Z, Zhu B K, Xu Y Y. Chin. J. Polym. Sci., 2011, 30(2):152.
[44] Li M M, Xu J, Chang C Y, Feng C C, Zhang L L, Tang Y Y, Gao C J. J. Membr. Sci., 2014, 459:62.
[45] Li Y F, Su Y L, Zhao X T, He X, Zhang R N, Zhao J J, Fan X C, Jiang Z Y. ACS Appl. Mater. Interfaces, 2014, 6(8):5548.
[46] Lv Y, Yang H C, Liang H Q, Wan L S, Xu Z K. J. Membr. Sci., 2015, 476:50.
[47] Du Y, Lv Y, Qiu W Z, Wu J, Xu Z K. Chem. Commun., 2016, 52:8589.
[48] Qiu W Z, Zhong Q Z, Du Y, Lv Y, Xu Z K. Green Chem., 2016, 18:6205.
[49] Song Q L, Jiang S, Hasell T, Liu M, Sun S J, Cheetham A K, Sivaniah E, Cooper A I. Adv. Mater., 2016, 28(13):2629.
[50] Fritsch D, Merten P, Heinrich K, Lazar M, Priske M. J. Membr. Sci., 2012, 401/402(19):222.
[51] Qian H D, Zheng J F, Zhang S B. Polymer, 2013, 54(2):557.
[52] Jimenez-Solomon M F, Song Q L, Jelfs K E, Munoz-Ibanez M, Livingston A G. Nat. Mater., 2016, 15:760.
[53] Alsbaiee A, Smith B J, Xiao L L L, Ling Y H, Helbling D E, Dichtel W R. Nature, 2015, 529(7585):190.
[54] Mao H, Zhang H Q, Li Y F, Xue Y B, Pei F, Wang J T, Liu J D. ACS Sustainable Chem. Eng., 2015, 3(9):1925.
[55] Mbuli B S, Mhlanga S D, Mamba B B, Nxumalo E N. Adv. Polym. Technol., 2017, 36(2):21720.
[56] Villalobos L F, Huang T F, Peinemann K V. Adv. Mater., 2017, 29(26), 1606641.
[57] 钱文静(Qian W J), 袁超(Yuan C), 郭江娜(Guo J N), 严锋(Yan F). 化学学报(Acta Chimica Sinica),2015, 73:310.
[58] Zhao Q, Yin M J, Zhang A P, Prescher S, Antonietti M, Yuan J Y. J. Am. Chem. Soc., 2013, 135:5549.
[59] Lin H J, Gong J, Miao H, Guterman R, Song H J, Zhao Q, Dunlop J W C, Yuan J Y. ACS Appl. Mater. Interfaces, 2017, 9(17):15148.
[60] Tang Y, Tang B B, Wu P Y. J. Mater. Chem. A, 2015, 3:12367.
[61] Yi Z, Zhang P B, Liu C J, Zhu L P. Macromolecules, 2016, 49(9):3343.
[62] Dong X, Li S H, Zhang Q F, Zhang S B. RSC Adv., 2014, 4(43):22625.
[63] Guan S S, Zhang S H, Liu P, Zhang G Z, Jian X G. Appl. Surf. Sci., 2014, 295(6):130.
[64] Guan S S, Zhang S H, Han R L, Zhang B G, Jian X G. Desalination, 2013, 318(10):56.
[65] 于致源(Yu Z Y), 丁万德(Ding W D), 王志宁(Wang Z N). 化学进展(Progress in Chemistry), 2015, 27(7):953.
[66] Shen Y X, Si W, Erbakan M, Decker K, Zorzi R D, Saboe P O, Kang Y J, Majd S, Butler P J, Walz T, Aksimentiev A, Hou J L, Kumar M. Proc. Natl Acad. Sci. U.S.A., 2015, 112:9810.
[67] Sun G F, Chung T S, Jeyaseelan K, Armugam A. RSC Adv., 2013, 3:473.
[68] Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane A G. J. Membr. Sci., 2014, 450(2):181.
[69] 付先彪(Fu X B), 喻桂朋(Yu G P). 化学进展(Progress in Chemistry), 2016, 28(7):1006.
[70] Wang C B, Li Z Y, Chen J X, Li Z, Yin Y H, Cao L, Zhong Y L, Wu H. J. Membr. Sci., 2017, 523(1):273.
[71] Wu H Q, Tang B B, Wu P Y. J. Membr. Sci., 2013, 428:301.
[72] Zhu J Y, Zhang Y T, Tian M M, Liu J D. ACS Sustainable Chem. Eng., 2015, 3(4):690.
[73] Ji Y L, An Q F, Guo Y S, Hung W S, Lee K R, Gao C J. J. Mater. Chem. A, 2016, 4(11):4224.
[74] Wang J J, Yang H C, Wu M B, Zhang X, Xu Z K. J. Mater. Chem. A, 2017, 5:16289.
[75] Kong X, Qiu Z L, Lin C E, Song Y Z, Zhu B K, Zhu L P, Wei X Z. J. Mater. Chem. A, 2017, 5:7876.
[76] Geise G M, Park H B, Sagle A C, Freeman B D, McGrath J E. J. Membr. Sci., 2011, 369:130.
[77] Skluzacek J M, Tejedor M I, Anderson M A. Microporous Mesoporous Mater., 2006, 94(1/3):288.
[78] Skluzacek J M, Tejedor M I, Anderson M A. J. Membr. Sci., 2007, 289(1):32.
[79] 陈雪(Chen X), 谷景华(Gu J H). 膜科学与技术(Membrane Science and Technology), 2013, 33(3):108.
[80] 范益群(Fan Y Q),漆虹(Qi H). 化工进展(Chemical Industry and Engineering Progress),2016, 35(6):1786.
[81] Qi H, Niu S F, Jiang X L, Xu N P. Ceram. Int., 2013, 39(3):2463.
[82] Song Z N, Fathizadeh M, Huang Y, Chu K H, Yoon Y, Wang L, Xu W W L, Yu M. J. Membr. Sci., 2016, 510(1):72.
[83] Puthai W, Kanezashi M, Nagasawa H, Tsuru Y. J. Membr. Sci., 2017, 535:331.
[84] 李兆魁(Li Z K), 周勇(Zhou Y), 朱家民(Zhu J M), 高从堦(Gao C J). 水处理技术(Technology of Water Treatment), 2009, 35(12):1.
[85] Paul D R. Science, 2012, 413:413.
[86] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015, 10:459.
[87] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12):2559.
[88] 万武波(Wan W B), 赵宗彬(Zhao Z B), 范彦如(Fan Y R), 胡涵(Hu H), 周泉(Zhou Q), 邱介山(Qiu J S). 化学进展(Progress in Chemistry), 2011, 23(9):1883.
[89] 王茜(Wang X), 郭晓燕(Guo X Y), 邵怀启(Shao H Qi), 周启星(Zhou Q X), 胡万里(Hu W L), 宋晓静(Song X J). 化学进展(Progress in Chemistry), 2015, 27(10):1470.
[90] Fathizadeh M, Xu W W L, Zhou F L, Yoon Y M, Yu M. Adv. Mater. Interfaces, 2017, 4:1600918.
[91] O'Hern S C, Jang D, Bose S, Idrobo J C, Song Y, Laoui T, Kong J, Karnik R. Nano Lett., 2015, 15:3254.
[92] Qin Y Z, Hu Y Y, Koehler S A, Cai L H, Wen J J, Tan X J, Xu W W L, Sheng Q, Hou X, Xue J M, Yu M, Weitz D A, ACS Appl. Mater. Interfaces, 2017, 9(11):9239.
[93] Mi B X. Science, 2014, 343:740.
[94] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343:752.
[95] Sun P Z, Zhu M, Wang K L, Zhong M L, Wei J Q, Wu D H, Xu Z P, Zhu H W. ACS Nano, 2013, 7(1):428.
[96] Aghigh A, Alizadeh V, Wong H Y, Islam M S, Amin N, Zaman M. Desalination, 2015, 365:389.
[97] Hegab H M, Zou L D. J. Membr. Sci., 2015, 484:95.
[98] Aba N F D, Chong J Y, Wang B, Mattevi C, Li K. J. Membr. Sci., 2015, 484:87.
[99] Xu C, Cui A J, Xu Y L, Fu X Z. Carbon, 2013, 62:465.
[100] Huang H B, Ying Y L, Peng X S. J. Mater. Chem. A, 2014, 2:13772.
[101] Mahmoud K A, Mansoor B, Mansour A, Khraisheh M. Desalination, 2015, 356:208.
[102] Huang H B, Song Z G, Wei N, Shi L, Mao Y Y, Ying Y L, Sun L W, Xu Z P, Peng X S. Nature Communications, 2013, 4:2979.
[103] Chen X F, Qiu M H, Ding H, Fu K Y, Fan Y Q. Nanoscale, 2016, 8:5696.
[104] Abraham J, Vasu K S, Williams C D, Gopinadhan K, Su Y, Cherian C T, Dix J, Prestat E, Haigh S J, Grigorieva I V, Carbone P, Geim A K, Nair R R. Nat. Nanotech., 2017, 12:546.
[105] 万武波(Wan W B), 纪冉(Ji R), 何峰(He F). 化学进展(Progress in Chemistry), 2017, 29(8):833.
[106] 崔言娟(Cui Y J), 王愉雄(Wang Y X), 王浩(Wang H), 陈艳芳(Chen Y F). 化学进展(Progress in Chemistry), 2016, 28(4):428.
[107] Wang Y J, Li L B, Wei Y Y, Xue J, Chen H, Ding L, Caro J, Wang H H, Angew. Chem. Int. Ed., 2017, 56:1.
[108] 刘宁(Liu N),王旭珍(Wang X Z),徐文亚(Xu W Y),郭德才(Guo D C),汤济洲(Tang J Z),张宝禄(Zhang B L). 化学进展(Progress in Chemistry), 2015, 25(5):726.
[109] Sun L W, Huang H B, Peng X S. Chem. Commun., 2013, 49:10718.
[110] Heiranian M, Farimani A B, Aluru N R. Nat. Commun., 2015, 6:8616.
[111] Kou J L, Yao J, Wu L L, Zhou X Y, Lu H J, Wu F M, Fan J T. Phys. Chem. Chem. Phys., 2016, 18:22210.
[112] 尤运城(You Y C), 曾甜(Zeng T), 刘劲松(Liu J S), 胡廷松(Hu T S), 台国安(Tai G A), 化学进展(Progress in Chemistry), 2015, 27(11):1578.
[113] Sun L W, Ying Y L, Huang H B, Song Z G, Mao Y Y, Xu Z P, Peng X S. ACS Nano, 2014, 8(6):6304.
[114] 孙丹丹(Sun D D),胡前库(Hu Q K),李正阳(Li Z Y),王李波(Wang L B),周爱国(Zhou A G),吴庆华(Wu Q H). 人工晶体学报(Jouranl of Synthetic Crystals), 2014, 43(11):2950.
[115] Ding L, Wei Y Y, Wang Y J, Chen H B, Caro J, Wang H H. Angew. Chem., 2017, 129(7):1851.
[116] Yang H C, Hou J W, Chen V C, Xu Z K. J. Mater. Chem. A, 2016, 4:9716.
[117] 董航(Dong H),张林(Zhang L),陈欢林(Chen H L),高从堦(Gao C J). 化学进展(Progress in Chemistry), 2014, 26(12):2007.
[118] 万扣强(Wan K Q),唐玉霖(Tang Y L),于水利(Yu S L). 水处理技术(Technology of Water Treatment), 2014, 40(1):7.
[119] Li Y F, He G W, Wang S F, Yu S N, Pan F S, Wu H, Jiang Z Y. J. Mater. Chem. A, 2013, 1:10058.
[120] Yin J, Deng B L. J. Membr. Sci., 2015, 479:256.
[121] Ji Y L, Qian W J, Yu Y W, An Q F, Liu L F, Zhou Y, Gao C J. Chin. J. Chem. Eng., 2017, 25(11):1639.
[122] Zinadini S, Zinatizadeh A A, Rahimi M, Vatanpour V, Zangeneh H, Beygzadeh M. Desalination, 2014, 349:145.
[123] Ekambaram K, Doraisamy M. Colloids Surf. A, 2017, 525(20):49.
[124] Yu L, Zhang Y T, Wang Y M, Zhang H Q, Liu J D. J. Hazard. Mater., 2015, 287:373.
[125] Yokwana K, Gumbi N, Adams F, Mhlanga S, Nxumalo E, Mamba B. J. Appl. Polym. Sci., 2015, 132(21):272.
[126] Zhu J Y, Tian M M, Hou J W, Wang J, Lin J Y, Zhang Y T, Liu J D, Bruggen B V. J. Mater. Chem. A, 2016, 4:1980.
[127] Yang L B, Wang Z, Zhang J D. J. Membr. Sci., 2017, 532(15):76.
[128] Zhu J Y, Qin L J, Uliana A, Hou J W, Wang J, Zhang Y T, Li X, Yuan S S, Li J, Tian M M, Lin J Y, Bruggen B V. ACS Appl. Mater. Interfaces, 2017, 9(2):1975.
[129] Lv Y, Du Y, Qiu W Z, Xu Z K. ACS Appl. Mater. Interfaces, 2017, 9(3):2966.
[130] Zhao F Y, Ji Y L, Weng X D, Mi Y F, Ye C C, An Q F, Gao C J. ACS Appl. Mater. Interfaces, 2016, 8:6693.
[131] Wang J, Wang Y M, Zhu J Y, Zhang Y T, Liu J D. J. Membr. Sci., 2017, 533(1):279.
[132] 高超(Gao C), 韩燚(Han Y), 姜炎秋(Jiang Y Q). 中国(CN), ZL 201410516673.2, 2015.
[133] Zhang C F, Wei K F, Zhang W H, Bai Y X, Sun Y P, Gu J. ACS Appl. Mater. Interfaces, 2017, 9(12):11082.
[134] Wang L Y, Fang M Q, Liu J, He J, Li J D, Lei J D. ACS Appl. Mater. Interfaces, 2015, 7(43):24082.
[135] Wu M B, Lv Y, Yang H C, Liu L F, Zhang X, Xu Z K. J. Membr. Sci., 2016, 515:239.
[136] Zhu Y Z, Xie W, Gao S J, Zhang F, Zhang W B, Liu Z Y, Jin J. Small, 2016, 12(36):5034.
[137] Lv Y, Yang H C, Liang H Q, Wan L S, Xu Z K. J. Membr. Sci., 2016, 500:265.
[138] Zhang Q, Fan L, Yang Z, Zhang R N, Liu Y N, He M R, Su Y L, Jiang Z Y. Appl. Surf. Sci., 2017, 40(15):494.
[139] Li Y B, Wee L H, Martens J A, Vankelecom I F J. J. Membr. Sci., 2017, 523:561.
[140] Rao Z, Feng K, Tang B B, Wu P Y. ACS Appl. Mater. Interfaces, 2017, 9(3):2594.
[141] Tang H Q, Ji S L, Gong L L, Guo H X, Zhang G J. Polym. Chem., 2013, 23:5621.
[142] Wang Q, Zhang G S, Li Z S, Deng S, Chen H, Wang P. Desalination, 2014, 352:38.
[143] Kim E S, Hwang G, El-Din M G, Liu Y. J. Membr. Sci., 2012, 394/395:37.
[144] Lau W J, Gray S, Matsuura T, Emadzadeh D, Paul C J, Ismail A F. Water Res., 2015, 80:306.
[145] Rajaeian B, Heitz A, Tade M O, Liu S M. J. Membr. Sci., 2015, 485:48.
[146] Liu T Y, Yuan H G, Li Q, Tang Y H, Zhang Q, Qian W Z, Bruggen B V, Wang X L. ACS Nano, 2015, 9(7):7488.
[147] Park C H, Tocci E, Fontananova E, Bahattab M A, Aljlil S A, Drioli E. J. Membr. Sci., 2016, 514:195.
[148] Grekhov A M, Eremin Y S. J. Membr. Sci., 2015, 485:42.
[149] Gusev A A, Guseva O. Adv. Mater., 2007, 19:2672.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[4] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[7] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[8] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[9] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[10] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[11] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[12] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[13] 顾凯丽, 李浩贞, 张晋华, 李锦祥. 硫化零价铁去除水中污染物的效能及交互机制[J]. 化学进展, 2021, 33(10): 1812-1822.
[14] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[15] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
阅读次数
全文


摘要

纳滤膜新型材料研究