English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1127-1141 DOI: 10.7536/PC170610 前一篇   后一篇

• 综述 •

基于新型材料的固相微萃取探针的制备与应用

殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*   

  1. 中山大学化学学院 环境与能源化学广东普通高校重点实验室 广州 510275
  • 收稿日期:2017-06-06 修回日期:2017-08-30 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 欧阳钢锋,e-mail:cesoygf@mail.sysu.edu.cn;徐剑桥,e-mail:522688270@qq.com E-mail:cesoygf@mail.sysu.edu.cn;522688270@qq.com
  • 基金资助:
    国家自然科学基金项目(No.21377172,21477166,21527813,21677182)资助

Solid-Phase Microextraction Fibers Based on Novel Materials:Preparation and Application

Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Juan Zheng, Gangfeng Ouyang*   

  1. Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2017-06-06 Revised:2017-08-30 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21377172, 21477166, 21527813, 21677182).
固相微萃取(SPME)是一种简便、快速、绿色的样品前处理方法,近年来引发了广泛关注。固相微萃取探针的萃取相对其萃取选择性和效率起着决定性作用,因此一系列物理化学性质优秀的新型固相微萃取涂层材料应运而生,被用于制备新型固相微萃取探针,以对不同样品基质中的有机小分子进行检测。本文概述了近年来新型SPME探针的研制所依托的新型材料,包括聚合物材料、碳材料、金属有机框架材料等,并重点阐述了相关材料的制备与固定方法、微观结构与萃取性能,以及所制备探针在环境分析、纺织品和皮革分析、食品分析等领域中的应用,并进一步对新型固相微萃取涂层今后的开发方向和应用前景进行了展望。
Convenient, rapid as well as environmentally-friendly, solid-phase microextraction is(SPME) a sample preparation technique, which draws widespread attention among the scientific community. The extraction phases in the SPME fibers determine their selectivity and extraction efficiency, hence, a series of new fiber coatings with excellent physical and chemical properties are developed for detection of various small organic molecules in complex sample matrices. Herein, we give a brief review of some materials widely used for the preparation of new SPME fibers, including polymers, carbonaceous materials, metal-organic framework, and some other materials, with the emphasis on the fiber preparation methodologies, the microstructures and extraction properties of the novel fiber coatings, together with applications of the synthesized fibers on environmental analysis, food analysis and inspection on textile and leather samples. Furthermore, future developing trends and application prospects of the new fiber coatings are discussed.
Contents
1 Introduction
2 Polymers
2.1 Commonly used polymers
2.2 Porous polymers
2.3 Molecularly-imprinted polymers
2.4 Polyelectrolytes
2.5 Electrospining
3 Carbonaceous materials
3.1 Graphene
3.2 Carbon nanotubes
3.3 Porous carbons
4 Metal-organic framework
4.1 MIL
4.2 MAF
4.3 Bio-MOFs
4.4 MOF@IL
4.5 MOF-polymer composite
5 Other materials
5.1 Titanium dioxide nanomaterials
5.2 C18
5.3 Mesoporous organosilica
6 Conclusion

中图分类号: 

()
[1] Arthur C L, Pawliszyn J. Anal. Chem., 1990, 62(19):2145.
[2] Ouyang G, Vuckovic D, Pawliszyn J. Chem. Rev., 2011, 111(4):2784.
[3] Spietelun A, Pilarczyk M, Kloskowski A, Namie Ds' nik J. Chem. Soc. Rev., 2010, 39(11):4524.
[4] Fontanals N, Marcé R, Borrull F. J. Chromatogr. A, 2007, 1152(1):14.
[5] Popp P, Paschke A. Chromatographia, 1997, 46(7):419.
[6] Xu J, He S, Jiang R, Zhu F, Ruan J, Liu H, Luan T, Ouyang G. Anal. Methods, 2014, 6(13):4895.
[7] Zhu F, Ruan W, He M, Zeng F, Luan T, Tong Y, Lu T, Ouyang G. Anal. Chim. Acta, 2009, 650(2):202.
[8] Ke Y, Zhu F, Jiang R, Wang Y, Yue L, Liu H, Zeng F, Ouyang G. Microchem. J., 2014, 112:159.
[9] Cai J, Zhu F, Ruan W, Liu L, Lai R, Zeng F, Ouyang G. Microchem. J., 2013, 110:280.
[10] Ye D, Wu S, Xu J, Jiang R, Zhu F, Ouyang G. J. Chromatogr. Sci., 2016, 54(2):112.
[11] Liu S, Hu Q, Qiu J, Wang F, Lin W, Zhu F, Wei C, Zhou N, Ouyang G. Environ. Sci. Technol., 2017, 51(9):5137.
[12] Duan C, Shen Z, Wu D, Guan Y. TrAC, Trends Anal. Chem., 2011, 30(10):1568.
[13] Ouyang G, Pawliszyn J. TrAC, Trends Anal. Chem., 2006, 25(7):692.
[14] Ouyang G, Cui S, Qin Z, Pawliszyn J. Anal. Chem., 2009, 81(14):5629.
[15] Qin Z, Bragg L, Ouyang G, Niri V H, Pawliszyn J. J. Chromatogr. A, 2009, 1216(42):6979.
[16] Walendzik G, Baumbach J, Klockow D. Anal. Bioanal. Chem., 2005, 382(8):1842.
[17] Huang S, He S, Xu H, Wu P, Jiang R, Zhu F, Luan T, Ouyang G. Environ. Pollut., 2015, 200:149.
[18] Zhang X, Tsurukawa M, Nakano T, Lei Y, Wania F. Environ. Sci. Technol., 2011, 45(24):10509.
[19] Rodrigues C, Portugal F, Nogueira J. Talanta, 2012, 89:521.
[20] Hu X, Zhang M, Ruan W, Zhu F, Ouyang G. Anal. Chim. Acta, 2012, 736:62.
[21] Liu S, Chen D, Zheng J, Zeng L, Jiang J, Jiang R, Zhu F, Shen Y, Wu D, Ouyang G. Nanoscale, 2015, 7(40):16943.
[22] Trewin A, Cooper A I. Angew. Chem. Int. Ed., 2010, 49(9):1533.
[23] Germain J, Hradil J, Fréchet J M, Svec F. Chem. Mater., 2006, 18(18):4430.
[24] Li B, Huang X, Liang L, Tan B. J. Mater. Chem., 2010, 20(35):7444.
[25] Abbott L J, Colina C M. Macromolecules, 2014, 47(15):5409.
[26] Xu S, Luo Y, Tan B. Macromol. Rapid Commun., 2013, 34(6):471.
[27] Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B. Macromolecules, 2011, 44(8):2410.
[28] Liu S, Hu Q, Zheng J, Xie L, Wei S, Jiang R, Zhu F, Liu Y, Ouyang G. J. Chromatogr. A, 2016, 1450:9.
[29] Zheng J, Liang Y, Liu S, Ding Y, Shen Y, Luan T, Zhu F, Jiang R, Wu D, Ouyang G. Nanoscale, 2015, 7(27):11720.
[30] Wang D, Li F, Chen Z, Lu G, Cheng H. Chem. Mater., 2008, 20(22):7195.
[31] Liang Y, Feng X, Zhi L, Kolb U, Müllen K. Chem. Commun., 2009, 7:809.
[32] Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D. J. Am. Chem. Soc., 2006, 128(35):11652.
[33] Kim T, Slowing I I, Chung P, Lin V SY. ACS Nano, 2010, 5(1):360.
[34] Ortel E, Fischer A, Chuenchom L, Polte J, Emmerling F, Smarsly B, Kraehnert R. Small, 2012, 8(2):298.
[35] Liu R, Ji W, He T, Zhang Z, Zhang J, Dang F. Carbon, 2014, 76:84.
[36] Wickramaratne N P, Xu J, Wang M, Zhu L, Dai L, Jaroniec M. Chem. Mater., 2014, 26(9):2820.
[37] Zheng J, Liang Y, Liu S, Jiang R, Zhu F, Wu D, Ouyang G. J. Chromatogr. A, 2016, 1427:22.
[38] Dickey F H. Proc. Natl. Acad. Sci. U.S.A., 1949, 35(5):227.
[39] Sallacan N, Zayats M, Bourenko T, Kharitonov A B, Willner I. Anal. Chem., 2002, 74(3):702.
[40] Wulff G, Sarhan A. Angew. Chem., 1972, 84(8):364.
[41] Wulff G. Angew. Chem., 1995, 107(17):1958.
[42] Vlatakis G, Andersson L I, Müller R, Mosbach K. Nature, 1993, 361(6413):645.
[43] Bolisay L D, Culver J N, Kofinas P. Biomacromolecules, 2007, 8(12):3893.
[44] Turiel E, Tadeo J, Martin-Esteban A. Anal. Chem., 2007, 79(8):3099.
[45] Mullett W M, Martin P, Pawliszyn J. Anal. Chem., 2001, 73(11):2383.
[46] Barahona F, Turiel E, Martín-Esteban A. Anal. Chim. Acta, 2011, 694(1):83.
[47] Hu Y, Wang Y, Chen X, Hu Y, Li G. Talanta, 2010, 80(5):2099.
[48] Deng D, Zhang J, Chen C, Hou X, Su Y, Wu L. J. Chromatogr. A, 2012, 1219:195.
[49] Davis A P, Wareham R S. Angew. Chem. Int. Ed., 1999, 38(20):2978.
[50] Li L, Lu Y, Bie Z, Chen H Y, Liu Z. Angew. Chem. Int. Ed., 2013, 52(29):7451.
[51] Wang S, Ye J, Bie Z, Liu Z. Chem. Sci., 2014, 5(3):1135.
[52] Friggeri A, Kobayashi H, Shinkai S, Reinhoudt D N. Angew. Chem. Int. Ed., 2001, 40(24):4729.
[53] Chen G, Qiu J, Fang X A, Xu J, Cai S, Chen Q, Liu Y, Zhu F, Ouyang G. Chem. Asian J., 2016, 11(16):2240.
[54] Korostynska O, Arshak K, Gill E, Arshak A. IEEE Sens. J. 2008, 8(1):20.
[55] Vuckovic D, de Lannoy I, Gien B, Shirey R E, Sidisky L M, Dutta S, Pawliszyn J. Angew. Chem. Int. Ed., 2011, 50(23):5344.
[56] Ouyang G, Oakes K D, Bragg L, Wang S, Liu H, Cui S, Servos M R, Dixon D G, Pawliszyn J. Environ. Sci. Technol., 2011, 45(18):7792.
[57] Xu J, Wu R, Huang S, Yang M, Liu Y, Liu Y, Jiang R, Zhu F, Ouyang G. Anal. Chem., 2015, 87(20):10593.
[58] Xu J, Huang S, Wu R, Jiang R, Zhu F, Wang J, Ouyang G. Anal. Chem., 2015, 87(6):3453.
[59] Zhang X, Oakes K D, Wang S, Servos M R, Cui S, Pawliszyn J, Metcalfe C D. TrAC, Trends Anal. Chem., 2012, 32:31.
[60] Wu Q, Wu D, Guan Y. Anal. Chem., 2013, 85(23):11524.
[61] Pham Q P, Sharma U, Mikos A G. Tissue Eng., 2006, 12(5):1197.
[62] Teo W E, Ramakrishna S. Nanotechnology, 2006, 17(14):R89.
[63] Li D, McCann J T, Xia Y, Marquez M. J. Am. Ceram. Soc., 2006, 89(6):1861.
[64] McCann J T, Li D, Xia Y. J. Mater. Chem., 2005, 15(7):735.
[65] Li D, Xia Y. Nano Lett., 2004, 4(5):933.
[66] Zewe J W, Steach J K, Olesik S V. Anal. Chem., 2010, 82(12):5341.
[67] Hong S, Kim J, Na Y S, Park J, Kim S, Singha K, Im G I, Han D K, Kim W J, Lee H. Angew. Chem. Int. Ed., 2013, 52(35):9187.
[68] Taskin M B, Xu R, Zhao H, Wang X, Dong M, Besenbacher F, Chen M. PCCP, 2015, 17(14):9446.
[69] Jeong S I, Kim B S, Kang S W, Kwon J H, Lee Y M, Kim S H, Kim Y H. Biomaterials, 2004, 25(28):5939.
[70] Peltenburg H, Droge S T, Hermens J L, Bosman I J. J. Chromatogr. A, 2015, 1390:28.
[71] Qiu J, Chen G, Zhu F, Ouyang G. J. Chromatogr. A, 2016, 1455:20.
[72] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. J. Phys. Chem. C, 2008, 112(22):8192.
[73] Choi B G, Park H, Yang M H, Jung Y M, Lee S Y, Hong W H, Park T J. Nanoscale, 2010, 2(12):2692.
[74] Rao C, Sood A, Subrahmanyam K, Govindaraj A. Angew. Chem. Int. Ed., 2009, 48(42):7752.
[75] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009, 110(1):132.
[76] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39(1):228.
[77] Zhang S, Du Z, Li G. Anal. Chem., 2011, 83(19):7531.
[78] Zhang H, Lee H K. J. Chromatogr. A, 2011, 1218(28):4509.
[79] Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X. Anal. Chim. Acta, 2010, 678(1):44.
[80] Ponnusamy V K, Jen J F. J. Chromatogr. A, 2011, 1218(39):6861.
[81] Ke Y, Zhu F, Zeng F, Luan T, Su C, Ouyang G. J. Chromatogr. A, 2013, 1300:187.
[82] Li S, Zhu F, Jiang R, Ouyang G. J. Chromatogr. A, 2016, 1429:1.
[83] Qu Q, Gu C, Gu Z, Shen Y, Wang C, Hu X. J. Chromatogr. A, 2013, 1282:95.
[84] Wang S, Jiang S, Wang X. Nanotechnology, 2008, 19(26):265601.
[85] Xia X, Leidy R B. Anal. Chem., 2001, 73(9):2041.
[86] Xu L, Feng J, Liang X, Li J, Jiang S. J. Sep. Sci., 2012, 35(12):1531.
[87] Qiu J, Chen G, Liu S, Zhang T, Wu J, Wang F, Xu J, Liu Y, Zhu F, Ouyang G. Anal. Chem., 2016, 88(11):5841.
[88] Iijima S. Nature, 1991, 354(6348):56.
[89] Saridara C, Brukh R, Iqbal Z, Mitra S. Anal. Chem., 2005, 77(4):1183.
[90] Cai Y, Jiang G, Liu J, Zhou Q. Anal. Chem., 2003, 75(10):2517.
[91] Cai Y, Jiang G, Liu J, Zhou Q. Anal. Chim. Acta, 2003, 494(1):149.
[92] Liu G, Wang J, Zhu Y, Zhang X. Anal. Lett., 2004, 37(14):3085.
[93] Sun Y, Zhang W, Xing J, Wang C. Microchimica Acta, 2011, 173(1/2):223.
[94] Jiang R, Zhu F, Luan T, Tong Y, Liu H, Ouyang G, Pawliszyn J. J. Chromatogr. A, 2009, 1216(22):4641.
[95] Chen G, Qiu J, Xu J, Fang X A, Liu Y, Liu S, Wei S, Jiang R, Luan T, Zeng F, Zhu F, Ouyang G. Chem. Sci., 2016, 7(2):1487.
[96] Chen Y, Vedala H, Kotchey G P, Audfray A, Cecioni S, Imberty A, Vidal S, Star A. ACS Nano, 2011, 6(1):760.
[97] Luo P, Wang H, Gu L, Lu F, Lin Y, Christensen K A, Yang S, Sun Y. ACS Nano, 2009, 3(12):3909.
[98] Cella L N, Chen W, Myung N V, Mulchandani A. J. Am. Chem. Soc., 2010, 132(14):5024.
[99] Reuel N F, Ahn J H, Kim J H, Zhang J, Boghossian A A, Mahal L K, Strano M S. J. Am. Chem. Soc., 2011, 133(44):17923.
[100] Chen D, Feng H, Li J. Chem. Rev., 2012, 112(11):6027.
[101] Zhong X, Bai H, Xu J, Chen H, Zhu Y. Adv. Funct. Mater., 2010, 20(6):992.
[102] Ouyang Y, Shi H, Fu R, Wu D. Sci. Rep., 2013, 3:1430.
[103] Yu L, Yan X. Chem. Commun., 2013, 49(21):2142.
[104] Zheng J, Wang K, Luo E, Wu D, Zhu F, Jiang R, Su C, Wei C, Ouyang G. Anal. Chim. Acta, 2015, 884:44.
[105] Ma T, Liu L, Yuan Z. Chem. Soc. Rev., 2013, 42(9):3977.
[106] Titirici M M, White R J, Brun N, Budarin V L, Su D S, del Monte F, Clark J H, MacLachlan M J. Chem. Soc. Rev., 2015, 44(1):250.
[107] Zheng J, Wang K, Liang Y, Zhu F, Wu D, Ouyang G. Chem. Commun., 2016, 52(41):6829.
[108] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem. Rev., 2012, 112(7):3959.
[109] Li G, Luican-Mayer A, Abanin D, Levitov L, Andrei E Y. Nat. Commun., 2013, 4:1744.
[110] Zhang W, Sun Y, Wu C, Xing J, Li J. Anal. Chem., 2009, 81(8):2912.
[111] Zheng J, Huang J, Xu F, Zhu F, Wu D, Ouyang G. Nanoscale, 2017, 9(17):5545.
[112] Bianchi F, Mattarozzi M, Betti P, Bisceglie F, Careri M, Mangia A, Sidisky L, Ongarato S, Dalcanale E. Anal. Chem., 2008, 80(16):6423.
[113] Frackowiak E, Beguin F. Carbon, 2001, 39(6):937.
[114] Zhu F, Guo J, Zeng F, Fu R, Wu D, Luan T, Tong Y, Lu T, Ouyang G. J. Chromatogr. A, 2010, 1217(50):7848.
[115] Li C, Shi G. Nanoscale, 2012, 4(18):5549.
[116] Choi B G, Yang M, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6(5):4020.
[117] Yan Z, Ma L, Zhu Y, Lahiri I, Hahm M G, Liu Z, Yang S, Xiang C, Lu W, Peng Z. ACS Nano, 2012, 7(1):58.
[118] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4(7):4324.
[119] Wang F, Liu S, Yang H, Zheng J, Qiu J, Xu J, Tong Y, Zhu F, Ouyang G. Talanta, 2016, 160:217.
[120] Cui X, Gu Z, Jiang D, Li Y, Wang H, Yan X. Anal. Chem., 2009, 81(23):9771.
[121] Chang N, Gu Z, Wang H, Yan X. Anal. Chem., 2011, 83(18):7094.
[122] Xie L, Liu S, Han Z, Jiang R, Liu H, Zhu F, Zeng F, Su C, Ouyang G. Anal. Chim. Acta, 2015, 853:303.
[123] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309(5743):2040.
[124] Gu Z, Yan X. Angew. Chem. Int. Ed., 2010, 49(8):1477.
[125] Huang H, Lin C, Wu C, Cheng Y, Lin C. Anal. Chim. Acta, 2013, 779:96.
[126] Yang C, Yan X. Anal. Chem., 2011, 83(18):7144.
[127] Yang C, Yan X. J. Mater. Chem., 2012, 22(34):17833.
[128] Huang C, Song M, Gu Z, Wang H, Yan X. Environ. Sci. Technol., 2011, 45(10):4490.
[129] Hong D, Hwang Y K, Serre C, Ferey G, Chang J S. Adv. Funct. Mater., 2009, 19(10):1537.
[130] Huang X, Lin Y, Zhang J, Chen X. Angew. Chem., 2006, 118(10):1587.
[131] He C, Tian J, Liu S, Ouyang G, Zhang J, Chen X. Chem. Sci., 2013, 4(1):351.
[132] Liu C, Li T, Rosi N L. J. Am. Chem. Soc., 2012, 134, 46:18886.
[133] Pardo E, Train C, Liu H, Chamoreau L M, Dkhil B, Boubekeur K, Lloret F, Nakatani K, Tokoro H, Ohkoshi S I. Angew. Chem., 2012, 124(33):8481.
[134] Li T, Kozlowski M T, Doud E A, Blakely M N, Rosi N L. J. Am. Chem. Soc., 2013, 135(32):11688.
[135] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'keeffe M, Yaghi O M. Science, 2002, 295(5554):469.
[136] Liu S, Zhou Y, Zheng J, Xu J, Jiang R, Shen Y, Jiang J, Zhu F, Su C, Ouyang G. Analyst, 2015, 140(13):4384.
[137] Zheng J, Li S, Wang Y, Li L, Su C, Liu H, Zhu F, Jiang R, Ouyang G. Anal. Chim. Acta, 2014, 829:22.
[138] Rowsell J L, Yaghi O M. J. Am. Chem. Soc., 2006, 128(4):1304.
[139] Gu Z, Jiang J, Yan X. Anal. Chem., 2011, 83(13):5093.
[140] Walden P. Bull. Acad. Imper. Sci.,1914:1800.
[141] Mecerreyes D. Prog. Polym. Sci., 2011, 36(12):1629.
[142] Amini R, Rouhollahi A, Adibi M, Mehdinia A. Talanta, 2011, 84(1):1.
[143] Zhou X, Xie P, Wang J, Zhang B, Liu M, Liu H, Feng X. J. Chromatogr. A, 2011, 1218(23):3571.
[144] Zhao Q, Wajert J C, Anderson J L. Anal. Chem., 2009, 82(2):707.
[145] Wei S, Lin W, Xu J, Wang Y, Liu S, Zhu F, Liu Y, Ouyang G. Anal. Chim. Acta, 2017, 971:48.
[146] Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J. Chem. Mater., 2012, 24(15):2829.
[147] Zornoza B, Martinez-Joaristi A, Serra-Crespo P, Tellez C, Coronas J, Gascon J, Kapteijn F. Chem. Commun., 2011, 47(33):9522.
[148] Bae T H, Lee J S, Qiu W, Koros W J, Jones C W, Nair S. Angew. Chem. Int. Ed., 2010, 49(51):9863.
[149] Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, i Xamena F X L, Gascon J. Nat. Mater., 2015, 14(1):48.
[150] Djozan D, Abdollahi L. Chromatographia, 2003, 57(11/12):799.
[151] Djozan D, Assadi Y, Haddadi S H. Anal. Chem., 2001, 73(16):4054.
[152] Budziak D, Martendal E, Carasek E. J. Chromatogr. A, 2007, 1164(1):18.
[153] Mehdinia A, Mousavi M F, Shamsipur M. J. Chromatogr. A, 2006, 1134(1):24.
[154] Cao D, Lv J, Liu J, Jiang G. Anal. Chim. Acta, 2008, 611(1):56.
[155] Zhang R, Elzatahry A A, Al-Deyab S S, Zhao D. Nano Today, 2012, 7(4):344.
[156] Wen Y, Chen L, Li J, Liu D, Chen L. TrAC, Trends Anal. Chem., 2014, 59:26.
[157] Zhou W, Li W, Wang J, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D. J. Am. Chem. Soc., 2014, 136(26):9280.
[158] Li M, Huang G, Qiao Y, Wang J, Liu Z, Liu X, Mei Y. Nanotechnology, 2013, 24(30):305706.
[159] Santaella C, Allainmat B, Simonet F, Chanáac C, Labille J R, Auffan M L, Rose J R, Achouak W. Environ. Sci. Technol., 2014, 48(9):5245.
[160] Crossland E J, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J. Nature, 2013, 495(7440):215.
[161] Liu S, Xie L, Zheng J, Jiang R, Zhu F, Luan T, Ouyang G. Anal. Chim. Acta, 2015, 878:109.
[162] Wang F, Zheng J, Qiu J, Liu S, Chen G, Tong Y, Zhu F, Ouyang G. ACS Appl Mater Interfaces, 2017, 9(2):1840.
[163] Li S, Lu C, Zhu F, Jiang R, Ouyang G. Anal. Chim. Acta, 2015, 873:57.
[164] Rissato S R, Galhiane M S, Apon B M, Arruda M S. J. Agric. Food Chem., 2005, 53(1):62.
[165] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359(6397):710.
[166] Lai C, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2003, 125(15):4451.
[167] Hou J, Ma Q, Du X, Deng H, Gao J. Talanta, 2004, 62(2):241.
[168] Du X, Wang Y, Tao X, Deng H. Anal. Chim. Acta, 2005, 543(1):9.
[169] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279(5350):548.
[170] Hashemi P, Shamizadeh M, Badiei A, Poor P Z, Ghiasvand A R, Yarahmadi A. Anal. Chim. Acta, 2009, 646(1):1.
[171] Wang G, Otuonye A N, Blair E A, Denton K, Tao Z, Asefa T. J. Solid State Chem., 2009, 182(7):1649.
[172] Díaz I, Mohino F, Blasco T, Sastre E, Pérez-Pariente J n. Microporous Mesoporous Mater., 2005, 80(1):33.
[173] Zhu F, Liang Y, Xia L, Rong M, Su C, Lai R, Li R, Ouyang G. J. Chromatogr. A, 2012, 1247:42.
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[3] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[10] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[11] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[12] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[13] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[14] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[15] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.