English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 491-501 DOI: 10.7536/PC170222 前一篇   后一篇

• 综述 •

手性芳基醇的生物催化不对称合成

白东亚1, 何军邀2*, 欧阳斌1, 黄金1, 王普1*   

  1. 1. 浙江工业大学药学院 杭州 310014;
    2. 浙江医药高等专科学校制药工程学院 宁波 315100
  • 收稿日期:2017-02-24 修回日期:2017-04-24 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 何军邀, 王普 E-mail:hejunyao1974@126.com;wangpu@zjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21676250),浙江省自然科学基金项目(No.LY16B060010),浙江省公益技术研究项目(No.2015C33137)和宁波市科技创新团队项目(No.2015C110027)资助

Biocatalytic Asymmetric Synthesis of Chiral Aryl Alcohols

Dongya Bai1, Junyao He2*, Bin Ouyang1, Jin Huang1, Pu Wang1*   

  1. 1. College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
    2. Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo 315100, China
  • Received:2017-02-24 Revised:2017-04-24 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21676250),the Zhejiang Provincial Natural Science Foundation of China (No.LY16B060010),the Program of Science and Technology of Zhejiang Province,China (No.2015C33137),and the Program of Ningbo Science and Technology Innovation Team (No.2015C110027).
光学活性芳基醇化合物是一类重要的手性砌块,可用于合成多种手性药物,其制备技术研究是近年来的研究热点。与传统的化学制备方法相比,生物催化方法由于具有选择性高、反应条件温和以及环境危害少等优点更具吸引力。通过生物催化不对称还原芳基酮是合成对映体纯芳基醇最有效的方法之一。本文综述了生物催化不对称还原制备手性芳基醇的研究进展,重点介绍了不同形式的生物催化剂应用于生物不对称还原的研究现状,包括微生物细胞、酶、重组工程菌以及固定化细胞等,概述了有机溶剂、表面活性剂和离子液体等底物助溶剂对生物不对称催化的影响,并对生物催化制备对映体纯芳基醇的研究前景进行了展望。
Optically active aryl alcohols are a kind of important chiral building blocks for the synthesis of chiral drugs. In recent years, the preparations of enantiopure aryl alcohols have become one of the focus points in organic chemistry. Compared with conventional chemical processes, biocatalysis is more attractive due to its high enantioselectivity, mild and safe reaction conditions and less environmental hazards. Asymmetric bioreduction of aryl ketones is the most effective method for the synthesis of enantiopure aryl alcohols. This paper mainly reviews the recent progress in the preparation of chiral aryl alcohols by asymmetric bioreduction catalyzed by microbial whole-cells, enzymes, genetically engineered bacteria or yeasts, as well as immobilized cells. The effects of substrate co-solvents such as organic solvents, surfactants and ionic liquids on asymmetric bioreduction are further summarized. The prospect of the preparation of enantiopure aryl alcohols by asymmetric bioreduction is also discussed.
Contents
1 Introduction
2 Bioreduction of aryl ketones by microbial whole cells
2.1 Biocatalysis by eukaryotic microbes
2.2 Biocatalysis by prokaryotic microbes
3 Bioreduction of aryl ketones by plant cells
4 Bioreduction of aryl ketones by purified enzymes
5 Bioreduction of aryl ketones by recombinant whole cells
6 Bioreduction of aryl ketones by immobilized cells
7 Effects of substrate co-solvents on the bioreduction
7.1 Organic solvents as co-solvent
7.2 Surfactants as co-solvent
7.3 Ionic liquids as co-solvent
8 Conclusion

中图分类号: 

()
[1] Li B J, Li Y X, Bai D M, Zhang X, Yang H Y, Wang J, Liu G, Yue J J, Ling Y, Zhou D S, Chen H P. Sci. Rep., 2014, 4:235.
[2] Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Nature, 2001, 409:258.
[3] Rogelio V B, Andrew G L. Biochem. Eng. J., 2009, 46:44.
[4] Harada H, Hirokawa Y, Suzuki K, Hiyama Y, Oue M, Kawashima H, Yoshida N, Furutani Y, Kato S. Bioorg. Med. Chem. Lett., 2003, 13:1301.
[5] Skelly M J, Chappell A M, Ariwodola O J, Weiner J L. Neurobiol. Learn Mem., 2016, 127:10.
[6] Isoda A, Saito R, Komatsu F, Negishi Y, Oosawa N, Ishikawa T, Miyazawa Y, Matsumoto M, Sawamura M, Manaka A. Int. J. Hematol., 2016, 11:1.
[7] 童庭敏(Tong T M), 骆红豆(Luo H D), 麦冬妮(Mai D N), 周彬彬(Zhou B B), 何军邀(He J Y), 黄金(Hang J), 王普(Wang P). 浙江化工(Zhejiang Chemical Industry), 2013, 9:7.
[8] Ji M S, Jeong M H, Ahn Y K, Kim S H, Kim Y J, Chae S C, Hong T J, Seong I W, Chae J K, Kim C J, Cho M C, Rha S W, Bae J H, Seung K B, Park S J. Int. J. Cardiol., 2016, 225:50.
[9] Burnett D A. Curr. Med. Chem., 2004,11:1873.
[10] Xu G C, Yu H L, Xu J H. Chin. J. Chem., 2013, 31:349.
[11] Hilborn J W, Lu Z H, Jurgens A R, Fang Q K, Byers P, Wald S A, Senanayake C H. Tetrahedron Lett., 2001, 42:8919.
[12] Asami K, Machida T, Jung S, Hanaya K, Shoji M, Sugai T. J. Mol. Catal. B:Enzym., 2013, 97:106.
[13] Koning P D, McAndrew D, Moore R, Moses I B, Boyles D C, Kissick K, Stanchina C L, Cuthbertson T, Kamatani A, Rahman L, Rodriguez R, Urbina A, Sandoval A, Rose P R. Org. Process Res. Dev., 2011, 15:1018.
[14] Qian J Q, Yan P C, Che D Q, Zhou Q L, Li Y Q. Tetrahedron Lett., 2014, 55:1528.
[15] Li L, Beaulieu C, Carriere M C, Denis D, Greig G, Guay D, O'Neil G, Zamboni R, Wang Z. Bioorg. Med. Chem. Lett., 2010, 20:7462.
[16] Cardoso F J B, de Figueiredo A F, da Silva Lobato M, de Miranda R M, Almeida R C, Pinheiro J C. J. Mol Model., 2008, 14:39.
[17] Solanki S, Innocenti P, Mas-Droux C, Boxall K, Barillari, van Montfort R M, Aherne G W, Bayliss R, Hoelder S. J. Med. Chem., 2011, 54:1626.
[18] Hutchinson J H, Seiders T J, Wang B. WO 2011017350, 2011.
[19] Broussy S, Cheloha R W, Berkowitz D B. Org. Lett., 2009, 11:305.
[20] Jiang X, Prasad K, Repi D? O. Synth. Commun., 2009, 39:2640.
[21] Singer J M, Wilson M W, Johnson P D, Graham S R, Cooke L W, Roof R L, Boxer P A, Gold L H, Meltzer L T, Janssen A, Roush N, Campbell J E, Su T Z, Hurst S I, Stoner C L, Schwarz J B. Bioorg. Med. Chem. Lett., 2009, 19:2409.
[22] Mastalerz H, Chang M, Chen P, Dextraze P, Fink B E. Gavai A, Goyal B, Han W C, Johnson W, Langley D, Lee F Y, Marathe P, Mathur A, Oppenheimer S, Ruediger E, Tarrant J, Tokarski J S, Vite G D, Vyas D M, Wong H, Wong T W, Zhang H, Zhang G. Bioorg. Med.Chem. Lett., 2007, 17:2036.
[23] Lin R. WO 2002057240, 2002.
[24] Patel R N. Biomolecules, 2013, 3:741.
[25] Lopes R O, Ramos A S, Miranda A S, Reichart B, Glasnov T, Kappe C O, Simon R C, Kroutil W, Miranda L S M, Leal I C R, Souza R O M A. J. Mol. Catal. B:Enzym., 2014, 104:101.
[26] Ferris C D, Hirsch D J, Brooks B P, Snyder S H. J. Neurochem., 1991, 57:729.
[27] Zalman L S, Brothers M A, Dragovich P S, Zhou R, Prins T J, Worland S T, Patick A K. Antimicrob. Agents Chemother., 2000, 44:1236.
[28] Tao J, McGee K. Org. Process Res. Dev., 2002, 6:520.
[29] 金保军(Jin B J), 孙婧(Sun J), 何军邀(He J Y), 黄金(Huang J), 王普(Wang P). 浙江化工(Zhejiang Chemical Industry), 2015, 46(11):15.
[30] Tschaen D M, Abramson L, Cai D, Desmond R, Dolling U H, Frey L, Karady S, Shi Y J, Verhoeven T R. J. Org. Chem., 1995, 60, 4324.
[31] Rauter M, Kasprzak J, Denter S, Becker K, Baronian K, Bode R, Kunze G, Vorbrodt H M. J. Mol. Catal. B:Enzym., 2014, 108:72.
[32] Xu Q, Xu X, Huang H, Li S. Biochem. Eng. J., 2015, 103:277.
[33] Contente M L, Serra I, Brambilla M, Eberini I, Gianazza E, De Vitis V, Molinari F, Zambelli P, Romano D. Appl. Microbiol. Biot., 2016, 100:193.
[34] Chadha A, Venkataraman S, Preetha R, Padhi S K. Bioorg. Chem., 2016, 68:187.
[35] Wei P, Liang J, Cheng J, Zong M H, Lou W Y. Microb. Cell Fact., 2016, 15:5.
[36] Pal M, Srivastava G, Moon L S, Jolly R. Bioresour. Technol., 2012, 118:306.
[37] 张文虎(Zhang W H), 蔡燕(Cai Y), 刘湘(Liu X), 方云(Fang Y), 许建和(Xu J H). 化学进展(Progress in Chemistry), 2007, 19(10):1537.
[38] Barros-Filho B A, Nunes F M, Oliveira M C F, Lemos T L G, Mattos M C, Gonzalo G, Gotor-Fernandez V, Gotor V. J. Mol. Catal. B:Enzym., 2010, 65:37.
[39] Lopes R O, Ribeiro J B, Ramos A S, Miranda L S M, Leal I C R, Leite S G F, Souza R O M A. Tetrahedron:Asymmetry, 2011, 22:1763.
[40] Abe R, Sugawara T, Machida T, Higashi T, Hanaya K, Shoji M, Cao C, Yamamoto T, Matsuda T, Sugai T. J. Mol. Catal. B:Enzym., 2012, 82:86.
[41] Singh A, Chisti Y, Banerjee U C. Process Biochem., 2012, 47:2398.
[42] Ni Y, Zhang B H, Sun Z H. Chin. J. Catal., 2012, 33:681.
[43] Vitale P, D'Introno C, Perna F M, Perrone M G, Scilimati A. Tetrahedron:Asymmetry, 2013, 24:389.
[44] Salvi N A, Chattopadhyay S. Tetrahedron:Asymmetry, 2016, 27:188.
[45] Bodai V, Nagy-Gyor L, Orkenyi R, Molnar Z, Kohari S, Erdelyi B, Nagymate Z, Romsics C, Paizs C, Poppe L, Hornyanszky G. J. Mol. Catal. B:Enzym., 2016, 134:206.
[46] Xie Y, Xu J H, Xu Y. Bioresour. Technol., 2010, 101:1054.
[47] Aydogan O, Bayrakatar E, Mehmetoglu U. J. Mol. Catal. B:Enzym., 2011, 72:46.
[48] Joshi B U, Singh P, Sain H S. Biocatal. Agric. Biotechnol., 2014, 3:142.
[49] Kaur K, Chimni S S, Saini H S, Chadha B S. Biocatal. Agric. Biotechnol., 2015, 4:49.
[50] Perna F M, Ricci M A, Scilimati A, Mena M C, Pisano I, Palmieri L, Agrimi G, Vitale P. J. Mol Catal B:Enzym., 2016, 124:29.
[51] 刘湘(Liu X), 张宝立(Zhang B L), 夏咏梅(Xia Y M), 许建和(Xu J H). 化学学报(Acta Chimica Sinica), 2009, 67:1492.
[52] Liu X, Pan Z G, Xu J H, Li H X. Chin. Chem. Lett., 2010, 21:305.
[53] Liu X, Wang Y, Gao H Y, Xu J H. Chin. Chem. Lett., 2012, 23:635.
[54] 张蓓花(Zhang B H), 倪晔(Ni Y), 孙志浩(Sun Z H). 生物加工过程(Chinese Journal of Bioprocess Engineering), 2012, 10(3):17.
[55] Kurbanoglu E B, Zilbeyaz K, Taskin M, Kurbanoglu N I. Tetrahedron:Asymmetry, 2009, 20:2759.
[56] Li J, Wang P, He J Y, Huang J, Tang J. Appl. Microbiol. Biot., 2013, 97:6685.
[57] Homann M J, Previte E. EP 0862645B1, 2003.
[58] 王普(Wang P), 金保军(Jin B J), 黄金(Huang J), 孙婧(Sun J), 何军邀(He J Y). CN 103849574A, 2014.
[59] Sun J, Huang J, Ding X J, Wang P. Appl. Biochem. Biotechnol, 2016, 180:1.
[60] Li H Y, Li Z Y, Ruan G H, Yu Y K, Liu X M. Biochem. Biophys. Res. Commun., 2016, 473:874.
[61] Kagohara E, Pellizari V H, Comasseto J V, Andrade L H, Porto A L M. Food Technol. Biotechnol., 2008, 46:381.
[62] Wang P, Cai J B, Ouyang Q, He J Y, Su H Z. Appl. Microbiol. Biotechnol., 2011, 90:1897.
[63] Ouyang Q, Wang P, Huang J, Cai J B, He J Y. J. Microbiol. Biotechnol., 2013, 23:343.
[64] Wang N Q, Sun J, Huang J, Wang P. Appl. Microbiol. Biotechnol., 2014, 98:8591.
[65] Aimar M L, Bordon D L, Formica S M, Cantero J J, Vazquez A M, Velasco M I, Rossi L I. Biocatal. Biotransform., 2014, 32:348.
[66] Chang X, Yang Z H, Zeng R, Yang G, Yan J B. Chin. J. Chem. Eng., 2010, 18:1029.
[67] 张宝立(Zhang B L). 江南大学硕士论文(Master Dissertation of Jiangnan University), 2008.
[68] Omori A T, Lobo F G, Amaral A G G, Oliveira C S. J. Mol. Catal. B:Enzym., 2016, 127:93.
[69] Bordon D L, Villaba L D, Aimar M I, Cantero J J, Vazquez A M, Formica S M, Krapacher C R, Rossi L I. Biocatal. Agric. Biotechnol., 2015, 4:493.
[70] Utsukihara T, Koshimura M, Abe C, Matsumiya T, Horiuchi C A. Biochemistry:an Indian Journal, 2014, 8:106.
[71] Contente M L, Serra I, Palazzolo L, Parravicini C, Gianazza E, Eberini I, Pinto A, Guidi B, Molinari F, Romano D. Org. Biomol. Chem., 2016, 14:3404.
[72] Qin F Y, Qin B, Mori T, Wang Y, Meng L, Zhang X, Jia X, Abe I, You S. CAS Catal., 2016, 6:6135.
[73] 朱利娟(Zhu L J), 余涛(Yu T), 顾颖(Gu Y), 杨标(Yang B), 邬敏辰(Wu M C). 食品与生物技术学报(J. Food Sci. Biotechnol.), 2016, 35(3):278.
[74] Wang L J, Li C X, Ni Y, Zhang J, Liu X, Xu J H. Bioresour. Technol., 2011, 102:7023.
[75] Ni Y, Xu J H. Biotechnol. Adv., 2012, 30:1279.
[76] Huang L, Ma H M,Yu H L,Xu J H. Adv. Synth. Catal., 2014, 356:1943.
[77] Zhang R Z, Xu Y, Xiao R. Biotechnol. Adv., 2015, 33:1671.
[78] Li A P, Ye L D, Yang X H, Wang B, Yang C C, Gu J L, Yu H W. ChemCatChem, 2016, 8:3229.
[79] Zhang R Z, Xu Y, Geng Y W, Wang S S, Sun Y, Xiao R. Appl. Biochem. Biotechnol., 2010, 160:868.
[80] Luo X, Wang Y J, Zheng Y G. Enzyme Microb. Technol., 2015, 77:68.
[81] Chen R, Liu X, Wang J L, Lin J P, Wei D Z. Enzyme Microb. Technol., 2015, 70:18.
[82] Yu T, Li J F, Zhu L J, Hu D, Deng C, Cai Y T, Wu M C. Ann. Microbiol., 2016, 66:343.
[83] Rauter M, Kasprzak J, Becker K, Baronian K, Bode R, Kunze G, Vorbrodt H M. J. Mol. Catal. B:Enzym., 2014, 104:8.
[84] Chen K L, Li K F, Deng J, Zhang B Q, Lin J P, Wei D Z. Microb. Cell Fact., 2016, 15:191.
[85] Xu P, Xu Y, Lou W Y, Zhao B Y, Zong M H, Lou W Y. ACS Sustainable Chem. Eng., 2015, 3:718.
[86] Vilela A, Schuller D, Mendesfaia A, Côrte-Real M. Appl. Microbiol. Biotechnol., 2013, 97:4991.
[87] Katsuya K, Hitomi N, Kazuma N. Appl. Surf. Sci., 2014, 293:312.
[88] Kurbanoglu E B, Zilbeyaz K, Kurbanoglu N I, Ozdal M, Taskin M, Algur O F. Tetrahedron:Asymmetry, 2010, 21:461.
[89] Lopes R O, Ribeiro J B, Miranda A S, Silva G V V, Mirand L S M, Leal I C R, Souza R O M A, Tetrahedron, 2014, 70:3239.
[90] 黄宇美(Huang Y M),徐玉(Xu Y),赵冰怡(Zhao B Y),娄文勇(Lou W Y). 现代食品科技(Modern Food Science and Technology), 2015, 31(9):124.
[91] 乐庸堂(Yue Y T), 徐岩(Xu Y), 穆晓清(Mu X Q). 过程工程学报(The Chinese Journal of Process Engineering), 2011, 11(6):1038.
[92] 侯丹丹(Hou D D), 于炜婷(Yu W T), 戴小敏(Dai X M), 刘袖洞(Liu X D), 马小军(Ma X J). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(4):830.
[93] 唐啸宇(Tang X Y), 孙洪林(Sun H L), 何冰芳(He B F).化学进展(Progress in Chemistry), 2009, 21(12):2716.
[94] 孙剑(Sun J), 王金泉(Wang J Q), 王蕾(Wang L), 张锁江(Zhang S J). 中国科学(Scientia Sinica), 2014, 44(1):100.
[95] 徐艳(Xu Y), 陆炀(Lu Y), 郑青云(Zheng Q Y), 孔维伟(Kong W W), 庞敬权(Pang J Q), 齐斌(Qi B), 朱益波(Zhu Y B). 食品与发酵工业(Food and Fermentation Industries), 2016, 42(7):65.
[96] Lavandera I, Kern A, Schaffenberger M, Gross J, Glieder A, de Wildenman S, Kroutil W. ChemSusChem, 2008, 1:431.
[97] 杨芬(Yang F). 江南大学硕士论文(Master Dissertation of Jiangnan University), 2014.
[98] 于明安(Yu M A), 朱晓冰(Zhu X B), 祁巍(Qi W), 赵领(Zhao L), 魏郁梦(Wei Y M). 催化学报(Chinese Journal of Catalysis), 2005, 26(7):609.
[99] 杨芬(Yang F), 刘湘(Liu X). 精细化工(Fine Chemicals), 2014, 31(5):565.
[100] 王梦亮(Wang M L), 崔丙建(Cui B J). 分子催化(J. Mol. Catal.), 2011, 25(5):427.
[101] Hussain W, Pollard D J, Truppo M, Lye G J. Biocatal. Biotransform., 2009, 25:443.
[102] Wang N Q, Li J, Sun J, Huang J, Wang P. Biochem. Eng. J., 2015, 101:119.
[103] Li J, Wang P, Huang J, Sun J. Bioresour. Technol., 2015, 175:42.
[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[3] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[4] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[5] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[6] 何桥, 殷中琼, 陈华保, 张祖民, 王显祥, 乐贵洲. 茚及其衍生物的催化不对称合成[J]. 化学进展, 2016, 28(6): 801-813.
[7] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[8] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[9] 龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏. 腈水解酶在医药中间体生物催化研究中的最新进展[J]. 化学进展, 2015, 27(4): 448-458.
[10] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
[11] 石玉刚, 党亚丽, 刘玉华, 白雪. 生物法与化学法制备硫酸软骨素[J]. 化学进展, 2014, 26(08): 1378-1394.
[12] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[13] 颜范勇, 李楚盈, 梁小乐, 代林枫, 王猛, 陈莉*. Baeyer-Villiger氧化反应的不同催化体系[J]. 化学进展, 2013, 25(06): 900-914.
[14] 刘湘, 潘争光, 许建和. 手性芳基邻二醇的不对称合成[J]. 化学进展, 2011, 23(5): 903-913.
[15] 高珊 曾庆乐 唐红艳 刘洋 董俊宇 张斌彬. 钛催化不对称硫醚氧化合成手性药物*[J]. 化学进展, 2010, 22(09): 1760-1766.