English
新闻公告
More
化学进展 2017, Vol. 29 Issue (8): 824-832 DOI: 10.7536/PC170204 前一篇   后一篇

• 综述 •

可生物降解抗污材料

郑柳春, 李春成*, 肖耀南, 张博, 王召栋   

  1. 中国科学院化学研究所 工程塑料重点实验室 北京 100190
  • 收稿日期:2017-02-10 修回日期:2017-06-14 出版日期:2017-08-15 发布日期:2017-07-24
  • 通讯作者: 李春成,E-mail:lichch@iccas.ac.cn E-mail:lichch@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21574137,51373186)资助

Biodegradable Anti-Fouling Materials

Zhaodong Wang, Chuncheng Li*, Yaonan Xiao, Bo Zhang, Zhaodong Wang   

  1. Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
  • Received:2017-02-10 Revised:2017-06-14 Online:2017-08-15 Published:2017-07-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21574137,51373186).
研究和开发抗生物污染材料,降低蛋白质的非特异性吸附和微生物的附着生长,不仅可以大大提高仪器的灵敏度,降低植入材料在愈合过程中的副作用,如炎症和血栓等,还可以节省很多航海时所需的能源和动力。目前抗污染材料多为亲水性的聚乙烯醇、聚(N-乙烯基吡咯烷酮)、聚(2-口恶唑啉)、聚乙二醇和两性离子聚合物。虽然这些材料抗污染能力强,但是分子链大多为聚丙烯酸酯或聚丙烯酰胺,不具有可生物降解性。可生物降解抗污材料可通过将抗污功能分子引入到可生物降解的基质分子(如脂肪族聚酯、聚碳酸酯、聚多肽和多糖等)中得到。本文综述了可生物降解抗污材料的研究进展,首先介绍了生物污染的危害,抗生物污染材料的分类、特征和存在的问题。重点综述了可生物降解抗污材料的研究现状,从亲水性聚合物(如聚乙二醇、两性离子聚合物)和抗污剂具体阐述了可降解抗污材料的抗污机理、合成、结构和性能,并对可生物降解抗污材料的未来发展进行了展望。
Study and development of anti-fouling materials, which can reduce nonspecific adsorption of proteins and attachment and growth of microorganisms, not only largely improve sensitivity of some medical diagnostic equipment, reduce side effects of medical implants, such as inflammation and thrombus, but also can save energy and power that navigation needs. Traditional anti-fouling materials are hydrophilic polymers such as poly(vinyl alcohol), poly(N-vinyl pyrrolidone), poly(2-oxazoline), poly(ethylene glycol) and zwitterionic polymers. Although these materials have good anti-fouling properties, they lack desirable biodegradability as they are based on non-degradable polymer backbones such as poly(acrylic ester) and poly(acrylic amide). Therefore, it is highly desirable to study and develop biodegradable anti-fouling materials. Biodegradable anti-fouling materials can be achieved by introducing anti-fouling functional moieties (hydrophilic polymers or antifoulants) into biodegradable matrixes, such as aliphatic polyesters, aliphatic polycarbonates, polypeptides and polysaccharides. In this review, the progress of biodegradable anti-fouling materials is summarized. Firstly, the harm of biological fouling, the classification, characteristic and existing problem of antifouling materials are introduced. Recent advancement of biodegradable anti-fouling materials is highlighted. The three main mechanism, i.e., spatial exclusion theory, structural similarity theory, and hydration theory, to resist nonspecific adsorption of proteins hydrophilic polymers with different structures (poly(ethylene glycol), zwitterionic polymers, and other hydrophilic polymers) are discussed and compared. The mechanism to resist adsorption of microorganism of anti-foulant is also summed up. Synthesis, structures, properties and their corresponding application fields of of biodegradable anti-fouling materials are critically summarized and commented in detail from hydrophilic polymers with various structures and anti-foulants. Perspective on future research directions of biodegradable anti-fouling materials is also discussed.
Contents
1 Introduction
2 Current research states of biodegradable anti-fouling materials
2.1 Biodegradable anti-fouling materials based on hydrophilic polymers
2.2 Biodegradable anti-fouling materials based on anti-foulants
3 Perspective of biodegradable anti-fouling materials

中图分类号: 

()
[1] Ma J L, Ma C F, Zhang G Z. Langmuir, 2015, 31:6471.
[2] Cao J, Xie X X, Lu A J, He B, Chen Y W, Gu Z W, Luo X L. Biomaterials, 2014, 35:4517.
[3] Chou Y N, Sun F, Hung H C, Jain P, Sinclair A, Zhang P, Bai T, Chang Y, Wen T C, Yu Q M, Jiang S Y. Acta Biomater., 2016, 40:31.
[4] Bai T, Sun F, Zhang L, Sinclair A, Liu S J, Ella-Menye JR, Zheng Y, Jiang S Y. Angew. Chem. Int. Ed., 2014, 53:12729.
[5] Shao Q, He Y, White AD, Jiang S Y. J. Phys. Chem. B, 2010, 114:16625.
[6] Shao Q, Mi L, Han X, Bai T, Liu S J, Li Y T, Jiang S Y. J. Phys. Chem. B, 2014, 118:6956.
[7] Cao B, Tang Q, Cheng G. J. Biomater. Sci., Polym. Ed., 2014, 25:1502.
[8] Chen S F, Cao Z Q, Jiang S Y. Biomaterials, 2009, 30:5892.
[9] Chien H W, Xu X W, Ella-Menye JR, Tsai W B, Jiang S Y. Langmuir, 2012, 28:17778.
[10] Wang X J, Wu G L, Lu C C, Wang Y N, Fan Y G, Gao H, Ma J B. Colloids Surf. B, 2011, 86:237.
[11] Zhou X, Xie Q Y, Ma C F, Chen Z J, Zhang G Z. Ind. Eng. Chem. Res., 2015, 54:9559.
[12] 刘红艳(Liu H Y),周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11):2187.
[13] Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. J. Biomed. Mater. Res. A, 1992, 26:1543.
[14] Ostuni E, Chapman R G, Liang M N, Meluleni G, Pier G, Ingber D E, Whitesides G M. Langmuir, 2001, 17:6336.
[15] Chen S F, Zheng J, Li L Y, Jiang S Y. J. Am. Chem. Soc., 2005, 127:14473.
[16] Zheng J, Li L Y, Tsao H K, Sheng Y J, Chen S F, Jiang S Y. Biophys. J., 2005, 89:158.
[17] Hower J C, He Y, Jiang S Y. J. Chem. Phys., 2008, 129:215101.
[18] Wu J, Lin W, Wang Z, Chen S. Langmuir, 2012, 28:7436.
[19] Shao Q, Jiang S Y. J. Phys. Chem. B, 2014, 118:7630.
[20] 慈吉良(Ci J H), 康宏亮(Kang H L), 刘晨光(Liu C G), 贺爱华(He A H),刘瑞刚(Liu R G). 化学进展(Progress in Chemistry), 2015, 27(9):1198.
[21] Zhai S Y, Ma Y H, Chen Y Y, Li D, Cao J, Liu Y J, Cai M T, Xie X X, Chen Y W, Luo X L. Polym. Chem., 2014, 5:1285.
[22] Ma W Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y C, Matsuyama H. J. Membr. Sci., 2016, 514:429.
[23] Noguer A C, Olsen S M, Hvilsted S, Kiil S. J. Coating. Tech. Res., 2016, 13:567.
[24] Ochs C J, Such G K, Stadler B, Caruso F. Biomacromolecules, 2008, 9:3389.
[25] Grafahrend D, Heffels K H, Beer M V, Gasteier P, Moller M, Boehm G, Dalton P D, Groll J. Nat. Mater., 2011, 10:67.
[26] Gagliardi M, Michele F D, Mazzolai B, Bifone A. J. Polym. Res., 2015, 22:17.
[27] Wang Y P, Yan L S, Li B, Qi Y X, Xie Z G, Jing X B, Chen X S, Huang Y B. Macromol. Biosci., 2015, 15:1304.
[28] Xu J B, Fan X L, Yang J X, Ma C F, Ye X D, Zhang G Z. Colloids Surf. B, 2014, 116:531.
[29] Jiang S Y, Cao Z Q. Adv. Mater., 2010, 22:920.
[30] Yan M Q, Yang H J, Zhang G Z. Mater. Sci. Eng. C, 2015, 51:189.
[31] Cao J, Xiu K M, Zhu K, Chen Y W, Luo X L. J. Biomed. Mater. Res. Part A, 2012, 100A:2079.
[32] Cao J, Zhai S Y, Li C L, He B, Lai Y S, Chen Y W, Luo X L, Gu Z W. J. Biomed. Nanotechnol., 2013, 9:1847.
[33] Cao Z Q, Yu Q M, Xue H, Cheng G, Jiang S Y. Angew. Chem. Int. Ed., 2010, 49:3771.
[34] Chan J M, Zhang L F, Yuet K P, Liao G, Rhee J W, Langer R. Biomaterials, 2009, 30:1627.
[35] Watanabe J, Nederberg F, Atthoff B, Bowden T, Hilborn J, Ishihara K. Mater. Sci. Eng., 2007, C27:227.
[36] Nederberg F, Bowden T, Hilborn J. Macromolecules, 2004, 37:954.
[37] Welch K, Nederberg F, Bowden T, Hilborn J, Strømme M. Langmuir, 2007, 23:10209.
[38] Ye S H, Hong Y, Sakaguchi H, Shankarraman V, Luketich S K, Amore A D, Wagner W R. ACS Appl. Mater. Interfaces, 2014, 6:22796.
[39] Lu C C, Liu N, Gu X, Li B Q, Wang Y N, Gao H, Ma J B, Wu G L. J. Polym. Res., 2014, 21:578.
[40] Sun F, Ella-Menye J, Galvan D D, Bai T, Hung H C, Chou Y N, Zhang P, Jiang S Y, Yu Q M. ACS Nano, 2015, 9:2668.
[41] Lu C C, Zhao D P, Wang S, Wang Y M, Wang Y N, Gao H, Ma J B, Wu G L. RSC Adv., 2014, 4:20665.
[42] Gudipati C S, Greenleaf C M, Johnson J A, Pryoncpan P, Wooley K L. J. Polym. Sci. Part A:Polym. Chem., 2004, 42:6193.
[43] Ma C F, Xu L G, Xu W T, Zhang G Z. J. Mater. Chem. B, 2013, 1:3099.
[44] Fay F, Renard E, Langlois V, Linossier I, Vallee-Rehel K. Eur. Polym. J., 2007, 43:4800.
[45] Fay F, Linossier I, Langlois V, Renard E, Vallee-Re K. Biomacromolecules, 2006, 7:851.
[46] Yao J H, Chen S S, Ma C F, Zhang G Z. J. Mater. Chem. B, 2014, 2:5100.
[47] Carteau D, Vallée-Réhel K, Linossier I, Quiniou F, Davy R, Compère C, Delbury M, Fay F. Prog. Org. Coat., 2014, 77:485.
[48] Fay F, Linossier I, Langlois V, Vallee-Rehel K. Biomacromolecules, 2007, 8:1751.
[49] Yi J, Huang C S, Zhuang H Y, Gong H, Zhang C Y, Ren R T, Ma Y P. Prog. Org. Coat., 2015, 87:161.
[50] Yi J, Ren R T, Huang C S, Zhang C Y, Ma Y P. J. Coat. Technol. Res., 2015, 12:525.
[51] Xie Q Y, Ma C F, Liu C, Ma J L, Zhang G Z. ACS Appl. Mater. Interfaces, 2015, 7:21030.
[52] Ma J L, Ma C F, Yang Y, Xu W T, Zhang G Z. Ind. Eng. Chem. Res., 2014, 53:12753.
[1] 邓璐遥, 李少路, 秦一文, 胡云霞. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907.
[2] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[3] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[4] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[5] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[6] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[7] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[8] 何晓燕*, 周文瑞, 徐晓君, 杨武*. 两性离子聚合物的合成及应用[J]. 化学进展, 2013, 25(06): 1023-1030.
[9] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[10] 刘红艳, 周健* . 两性离子聚合物的生物应用[J]. 化学进展, 2012, 24(11): 2187-2197.
[11] 方德彩*. [2+2]环加成反应机理的理论研究[J]. 化学进展, 2012, 24(06): 879-885.
[12] 王佳力, 唐键, 张鹏, 王珏, 李扬德, 秦岭. 体外电化学测试对镁合金体内降解行为的预测[J]. 化学进展, 2012, 24(04): 598-605.
[13] 周海峰,范青华,何艳梅,古练权,陈新滋. 液态聚乙二醇作为绿色反应介质在有机反应中的应用*[J]. 化学进展, 2007, 19(10): 1517-1528.
[14] 李晓然,袁晓燕. 聚乙二醇-聚乳酸共聚物药物载体*[J]. 化学进展, 2007, 19(06): 973-981.
[15] 刘继延,张黎明. 用于环酯单体开环聚合的无金属引发/催化体系*[J]. 化学进展, 2007, 19(0203): 350-355.
阅读次数
全文


摘要

可生物降解抗污材料