English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1426-1434 DOI: 10.7536/PC160224 前一篇   后一篇

• 综述与评论 •

甘油在微生物代谢合成及生物催化中的应用

孙佳, 王普*, 章鹏鹏, 黄金   

  1. 浙江工业大学药学院 杭州 310014
  • 收稿日期:2016-02-01 修回日期:2016-05-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 王普 E-mail:wangpu@zjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21676250)和浙江省自然科学基金项目(No.LY16B060010)资助

Application of Glycerol in Microbial Biosynthesis and Biocatalysis

Sun Jia, Wang Pu*, Zhang Pengpeng, Huang Jin   

  1. College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2016-02-01 Revised:2016-05-01 Online:2016-09-15 Published:2016-08-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21676250), and the Zhejiang Provincial Natural Science Foundation of China (No. LY16B060010).
生物柴油是一种可再生能源,因其可替代石油来源的柴油而日益受到重视。随着生物柴油工业的蓬勃发展,其制备过程中的主要副产物甘油出现明显的产能过剩。作为一种廉价的清洁资源,甘油的深度开发和利用既是发展生物柴油工业的关键,也符合绿色化学的发展要求。近年来,甘油不仅作为重要的起始原料用于一些高附加值化学品的制备,而且因其独特的理化性质和易降解、生物相容性好等特性,在生物催化和绿色溶剂领域的应用研究日趋活跃。本文主要综述了甘油在工业微生物发酵、生物合成和绿色溶剂领域的研究进展,并就其应用中存在的一些问题,如甘油原料品质和微生物利用效率等进行分析,同时展望了甘油在生物催化领域的应用前景。
Renewable biodiesel is a widely accepted energy for its alternative use of petroleum diesel. Glycerol is an inevitable byproduct of biodiesel production. With the vigorous development of biodiesel industry, there is an obvious oversupply of glycerol. This over-generated green resource urgently needs further exploration for the sustainable new applications, which is critical to the development of biodiesel industry and is in accordance with the demands of green chemistry. In recent years, glycerol has become one of the most important raw material for the production of high value-added chemicals. Moreover, based on its special physicochemical properties, as well as degradability and good biocompatibility, glycerol plays an increasingly important role in biocatalysis and can be used as a new green solvent. This paper mainly reviews the progress on glycerol for industrial biotechnology application in microbial fermentation, biosynthesis and green solvent. Some practical application problems involved in glycerol biotransformation, such as feedstock quality and microbial utilization efficiency, are also discussed in detail. The future application development of glycerol in biocatalysis is also prospected.

Contents
1 Introduction
2 Glycerol uptake and intracellular metabolism
3 Glycerol for microbial growth
4 Glycerol-based raw material for biotransformation
4.1 Glycerol to value-added chemicals
4.2 Solution to the inhibition of high glycerol concentration
4.3 Strategy for biotransformation efficiency
4.4 Bioconversion of crude glycerol
5 Application of glycerol in biocatalysis
5.1 Biocompatibility of glycerol
5.2 Application in asymmetric bioreduction
5.3 Glycerol as green solvent
5.4 Glycerol to deep eutectic solvents (DESs)
6 Conclusion

中图分类号: 

()
[1] Okoye P U, Hameed B H. Renew. Sust. Energ. Rev., 2016, 53:558.
[2] Ye X P, Ren S J. Soy-Based Chemicals and Materials. Knoxville:ACS Symposium Series, 2014.
[3] Yang F X, Hanna M A, Sun R C. Biotechnol. Biofuels, 2012, 5:13.
[4] García J I, García-Marín H, Pires E. Green Chem., 2014, 16:1007.
[5] Zhou C H, Beltramini J B, Fan Y X, Lu G Q. Chem. Soc. Rev., 2008, 37:527.
[6] Wolfson A, Snezhko A, Meyouhas T, Tavor D. Green Chem. Lett. Rev., 2012, 5(1):7.
[7] Díaz-Álvarez A E, Francos J, Lastra-Barreira B, Crochet P, Cadierno C. Chem. Commun., 2011, 47:6208.
[8] Wolfson A, Dlugy C, Shotland Y, Tavor D. Tetrahedron Lett., 2009, 50:5951.
[9] Azua A, Mata J A, Eduardo P E. Organometallics, 2011, 30(20):5532.
[10] Azua A, Mata J A, Peris E, Lamaty F, Martinez J, Colacino E. Organometallics, 2012, 31(10):3911.
[11] Gu Y L, Jérôme F. Green Chem., 2010, 12:1127.
[12] Feng S, Yan Y B. Proteins, 2008, 71:844.
[13] Bhaganna P, Bielecka A, Molinari G, Hallsworth J. E. Curr. Genet., 2015, DOI:10.1007/s00294-015-0539-1.
[14] Fields P A, Wahlstrand B D, Somero G N. Eur. J. Biochem., 2001, 268:4497.
[15] Wang Z X, Zhuge J, Fang H Y, Prior B A. Biotechnol. Adv., 2001, 19:201.
[16] Silva G P D, Mack M, Contiero J. Biotechnol. Adv., 2009, 27:30.
[17] Rodriguez A, Wojtusik M, Ripoll V, Santos V E, Garcia-Ochoa F. Bioresource Technol., 2016, 200:830.
[18] Jiang W, Wang S Z, Wang Y P, Fang B S. Biotechnol. Biofuels, 2016, 9:57.
[19] Easterling E R, French W T, Hernandez R, Licha M. Bioresource Technol., 2009, 100:356.
[20] Alvarez M de F, Medina R, Pasteris S E, Strasser de Saad A M, Sesma F. J. Mol. Microbiol. Biotechnol., 2004, 7:170.
[21] Zhou X, Zhou X L, Xu Y, Yu S Y. Bioproc. Biosyst. Eng., 2016, 39(8):1315.
[22] Ringel A K, Wilkens E, Hortig D, Willke T, Vorlop K D. Appl. Microbiol. Biotechnol., 2012, 93:1049.
[23] Dobson R, Gray V, Rumbold K. J. Ind. Microbiol. Biotechnol., 2012, 39:217.
[24] Clomburg J M, Gonzalez R. Trends Biotechnol., 2013, 31(1):20.
[25] Dro?d?yńska A, Pawlicka J, Kubiak P, Ko Ds' mider A, Pranke D, Olejnik-Schmidt A, Czaczyk K. New Biotechnol., 2014, 31(5):402.
[26] Wilkens E, Ringel A K, Hortig D, Willke T, Vorlop K D. Appl. Microbiol. Biotechnol., 2012, 93:1057.
[27] Dharmadi Y, Murarka A, Gonzalez R. Biotechnol. Bioeng., 2006, 94:821
[28] Rodriguez A, Wojtusik M, Ripoll V, Santos V E, Garcia-Ochoa F. Bioresource Technol., 2016, 200:830.
[29] Xu Y Z, Guo N N, Zheng Z M, Ou X J, Liu H J, Liu D H. Biotechnol. Bioeng., 2009, 104(5):965.
[30] Tang X M, Tan Y S, Zhu H, Zhao K, Shen W. Appl. Environ. Microb., 2009, 75(6):1628.
[31] Silva G P D, Cristian J, Lima C J B D, Contiero J. Catal. Today, 2015, 257:259.
[32] Kaeding T, DaLuz J, Kube J, Zeng A P. Bioproc. Biosyst. Eng., 2015, 38(3):575.
[33] Zheng X J, Jin K Q, Zhang L, Wang G, Liu Y P. Braz. J. Microbiol., 2016, 47:129.
[34] Li M H, Wu J, Liu X, Lin J P, Wei D Z, Chen H. Bioresource Technol., 2010, 101:8294.
[35] Cho S, Kim T, Woo H M, Kim Y, Lee J, Um Y. Biotechnol. Biofuels., 2015,8:146.
[36] Yang T W, Rao Z M, Zhang X, Xu M J, Xu Z H, Yang S T. Microb. Cell Fact., 2015, 14:122.
[37] Ahn J H, Sang B I, Um Y. Bioresource Technol., 2011, 102:4934.
[38] Malaviya A, Jang Y S, Lee S Y. Appl. Microbiol. Biot., 2012, 93(4):1485.
[39] Wang Q, Yang P, Liu C S, Xue Y C, Xian M, Zhao G. Bioresource Technol., 2013, 131:548.
[40] Kamzolova S V, Fatykhova A R, Dedyukhina E G, Anastassiadis S G, Golovchenko N P, Morgunov I G. Food Technol. Biotechnol., 2011, 49(1):65.
[41] Scholten E, Renz T, Thomas J. Biotechnol. Lett., 2009, 31:1947.
[42] Vlysidis A, Binns M, Webb C, Theodoropoulos C. Biochem. Eng. J., 2011, 58/59:1.
[43] Zhu Y F, Li J H, Tan M, Liu L, Jiang L L, Sun J, Lee P, Du G C, Chen J. Bioresource Technol., 2010, 101:8902.
[44] Murakami N, Oba M, Iwamoto M, Tashiro Y, Noguchi T, Bonkohara K, Abdel-Rahman M A, Zendo T, Shimoda M, Sakai K, Sonomoto K. J. Biosci. Bioeng., 2016, 121(1):89.
[45] Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K. Appl. Environ. Microb., 2009, 75:7760.
[46] Dounavisa A S, Ntaikoua I, Lyberatos G. Bioresource Technol., 2015, 198:701.
[47] Nwachukwu R E S, Shahbazi A, Wang L, Ibrahim S, Worku M, Schimmel K. AMB Express, 2012, 2:20.
[48] Gao C, Li Z, Zhang L J, Wang C, Li K, Ma C Q, Xu P. Green Chem., 2015, 17:804
[49] Raška J, Skopal F, Komers K, Machek J. Collect. Czech. Chem. Commun., 2007, 72:1269.
[50] Cheng K K, Zhang J A, Liu D H, Sun Y, Liu H J, Yang M D, Xu J M. Process Biochem., 2007, 42:740.
[51] Jensen T Ø, Kvist T, Mikkelsen M J, Westermann P. AMB Express, 2012, 2:44.
[52] Zhou P P, Zhang Y, Wang P X, Xie J L, Ye Q. Ann. Microbiol., 2014, 64:219.
[53] Samul D, Leja K, Grajek W. Ann. Microbiol., 2014, 64:891.
[54] Ardi M S, Aroua M K, Hashim N A. Renew. Sust. Energ. Rev., 2015, 42:1164.
[55] Jun S A, Moon C, Kang C H, Kong S W, Sang B I, Um Y. Appl. Biochem. Biotechnol., 2010, 161:491.
[56] Hubálek Z. Cryobiology, 2003, 46:205.
[57] Gekkot K, Timasheff S N. Biochemistry, 1981, 20:4667.
[58] Chen S, Land H, Berglund P, Humble M S. J. Mol. Catal. B:Enzym., 2016, 124:20.
[59] Torrelo G, Hanefeld U, Hollmann F. Catal. Lett., 2015, 145:309.
[60] Ni Y, Xu J H. Biotechnol. Adv., 2012, 30:1279.
[61] Hilker I, Gutiérrez M C, Furstoss R, Ward J, Wohlgemuth R, Alphand V. Nat. Protoc., 2008, 3:546.
[62] Hao G, Chen H Q, Gu Z N, Zhang H, Chen W, Chen Y Q. Microb. Cell Fact., 2015, 14:205.
[63] Beltrán-Prieto J C, Kolomazník K, Pecha J. Aust. J. Chem., 2013, 66:511.
[64] Zhang Y, Gao F, Zhang S P, Su Z G, Ma G H, Wang P. Bioresource Technol., 2011, 102:1837.
[65] Rocha-Martin J, Acosta A, Guisan J M, López-Gallego F. ChemCatChem, 2015, 7:1939.
[66] Taketomi S, Asano M, Higashi T, Shoji M, Sugai T. J. Mol. Catal. B:Enzym., 2012, 84:83.
[67] Wang S S, Xu Y, Zhang R Z, Zhang B T, Xiao R. Process Biochem., 2012, 47:1060.
[68] Li J, Wang P, He J Y, Huang J, Tang J. Appl. Microbiol. Biotechnol., 2013, 97:6685.
[69] 王普(Wang P), 黄金(Huang J), 丁徐中(Ding X Z). CN104893989A, 2015.
[70] Nemati F, Hosseini M M, Kiani H. J. Saudi. Chem. Soc., 2013, DOI:10.1016/j.jscs.2013. 02.004.
[71] Hernáiz M J, Alcántara A R, García J I, Sinisterra J V. Chem.-Eur. J., 2010, 16:9422.
[72] Wolfson A, Dlugy C, Tavor D, Blumenfeld J, Shotland Y. Tetrahedron-Asymmetry, 2006, 17:2043.
[73] Andrade L H, Piovan L, Pasquini M D. Tetrahedron-Asymmetry, 2009, 20:1521.
[74] Cheng C, Nian Y C. J. Mol. Catal. B:Enzym., 2016, 123:141.
[75] Li J, Wang P, Huang J, Sun J. Bioresource Technol., 2015, 175:42.
[76] Wang N Q, Li J, Sun J, Huang J, Wang P. Biochem. Eng. J., 2015, 101:119.
[77] Smith E L, Abbott A P, Ryder K S. Chem. Rev., 2014, 114:11060.
[78] Müller C R, Lavandera I, Gotor-Fernández V, María P D D. ChemCatChem, 2015, 7:2654.
[79] Bewley B R, Berkaliev A, Henriksen H, Ball D B, Ott L S. Fuel Process Technol., 2015, 138:419.
[80] Maugeri Z, María P D D. ChemCatChem, 2014, 6:1535.
[81] Zhao H, Baker G A, Holmes S. J. Mol. Catal. B:Enzym., 2011, 72:163.
[82] Xu P, Cheng J, Lou W Y, Zong M H. RSC Adv., 2015, 5:6357.
[83] Tian X M, Zhang S Q, Zheng L Y. J. Microbiol. Biotechnol., 2016, 26:80.
[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[3] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[4] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[5] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[6] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[7] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[8] 龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏. 腈水解酶在医药中间体生物催化研究中的最新进展[J]. 化学进展, 2015, 27(4): 448-458.
[9] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
[10] 石玉刚, 党亚丽, 刘玉华, 白雪. 生物法与化学法制备硫酸软骨素[J]. 化学进展, 2014, 26(08): 1378-1394.
[11] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[12] 颜范勇, 李楚盈, 梁小乐, 代林枫, 王猛, 陈莉*. Baeyer-Villiger氧化反应的不同催化体系[J]. 化学进展, 2013, 25(06): 900-914.
[13] 张芳, 程丽华*, 徐新华, 张林, 陈欢林. 能源微藻采收及油脂提取技术[J]. 化学进展, 2012, (10): 2062-2072.
[14] 冯国栋, 程丽华*, 徐新华, 张林, 陈欢林. 微藻高油脂化基因工程研究策略[J]. 化学进展, 2012, 24(07): 1413-1426.
[15] 刘湘, 潘争光, 许建和. 手性芳基邻二醇的不对称合成[J]. 化学进展, 2011, 23(5): 903-913.