English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1196-1206 DOI: 10.7536/PC160212 前一篇   后一篇

• 综述与评论 •

聚天冬酰胺衍生物药物/基因载体的合成和应用

付开乔1*, 张光彦1*, 蒋序林2   

  1. 1. 湖北工业大学轻工学部 绿色轻工材料湖北省重点实验室 武汉 430068;
    2. 武汉大学化学与分子科学学院 生物医用高分子材料教育部重点实验室 武汉 430072
  • 收稿日期:2016-02-01 修回日期:2016-05-01 出版日期:2016-08-15 发布日期:2016-07-12
  • 通讯作者: 付开乔, 张光彦 E-mail:664094526@qq.com;zhangguangyan@whu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21174109,21374083)和湖北工业大学博士科研启动基金项目(No.BSQD14003)资助

Synthesis and Application of Polyaspartamide Derivatives for Drug/Gene Delivery

Fu Kaiqiao1*, Zhang Guangyan1*, Jiang Xulin2   

  1. 1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, Department of Light Industry, Hubei University of Technology, Wuhan 430068, China;
    2. Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
  • Received:2016-02-01 Revised:2016-05-01 Online:2016-08-15 Published:2016-07-12
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21174109, 21374083) and the Doctoral Scientific Research Foundation of Hubei University of Technology (No. BSQD14003)
与碳链聚合物相比,聚氨基酸类高分子由于其生物相容性好、可降解代谢、毒副作用低等优点而被广泛应用于生物医药领域。基于天冬氨酸的聚天冬酰胺衍生物,其合成方法简单多样,通过对其修饰改性可制备出具有各种环境响应性(温度、pH和还原敏感)的智能高分子,得到高效、低毒的药物/基因载体,实现可控释放、增强疗效、降低药物副作用的目的。本文重点介绍了聚天冬酰胺衍生物(特别是刺激响应性聚天冬酰胺衍生物)的合成改性方法、及其在药物和基因载体领域最新的研究进展,并对其发展前景进行了展望。
Compared with carbon-chain polymers, poly(amino acid)s have attracted much attentions in biomedical and pharmaceutical fields because of their good biocompatibility, biodegradability and nontoxicity. Polyaspartamide derivatives based on L-aspartic acid not only can be easily synthesized, but also can be further modified with various structures to prepare intelligent material with different stimuli-responsivity (such as temperature, pH and redox), resulting in controlled release, enhancement of therapeutic effects and reduction of the drug side effects. In this review, the different synthetic strategies for preparing polyaspartamide derivatives and the up-to-date developments on polyaspartamide derivatives for drug and gene delivery systems are summarized. Besides, the future perspectives of polyaspartamide derivatives are discussed.

Contents
1 Introduction
2 Synthesis of polyaspartamide derivatives
2.1 Aminolysis reaction of PSI
2.2 ROP of N-carboxyanhydride
3 Application of polyaspartamide derivatives
3.1 Drug delivery
3.2 Gene delivery
4 Outlook

中图分类号: 

()
[1] Prabhakar U, Maeda H, Jain R K, Sevick-Muraca E M, Zamboni W, Farokhzad O C, Barry S T, Gabizon A, Grodzinski P, Blakey D C. Cancer Res., 2013, 73:2412.
[2] Xu L, Anchordoquy T. J. Pharm. Sci-US, 2011, 100:38.
[3] Lorenzer C, Dirin M, Winkler A M, Baumann V, Winkler J. J. Control. Release, 2015, 203:1.
[4] Sun H L, Meng F H, Dias A A, Hendriks M, Feijen J, Zhong Z Y. Biomacromolecules, 2011, 12:1937.
[5] Khan W, Muthupandian S, Farah S, Kumar N, Domb A J. Macromol. Biosci., 2011, 11:1625.
[6] Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T. Br. J. Cancer, 2005, 92, 1240.
[7] Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R. Invest. New Drugs, 2012, 30:1621.
[8] Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J P. Biomaterials, 2008, 29:3477.
[9] Tomida M, Nakato T, Matsunami S, Kakuchi T. Polymer, 1997, 38:4733.
[10] Nakato T, Kusuno A, Kakuchi T. J. Polym. Sci. Part A:Polym. Chem., 2000, 38:117.
[11] Moon J R, Kim M W, Kim D, Jeong J H, Kim J H. Colloid Polym. Sci., 2011, 289:63.
[12] Das P, Jana N R. RSC Adv., 2015, 5:33586.
[13] Seo K, Lee D S, Kim S C, Kim D. J. Nanosci Nanotechno., 2010, 10:6986.
[14] Seo K, Kim D. Acta Biomater., 2010, 6:2157.
[15] Liu D E, Han H, Lu H Q, Wu G L, Wang Y N, Ma J B, Gao H. RSC Adv., 2014, 4:37130.
[16] Bach Q V, Moon J R, Lee D S, Kim J H. J. Appl. Polym. Sci., 2008, 107:509.
[17] Tachibana Y, Kurisawa M, Uyama H, Kakuchi T, Kobayashi S. Chem. Commun., 2003, 1:106.
[18] Gu X, Wang J J, Liu X F, Zhao D P, Wang Y N, Gao H, Wu G L. Soft Matter, 2013, 9:7267.
[19] Lu C C, Wang X J, Wu G L, Wang J J, Wang Y N, Gao H, Ma J B. J. Biomed. Mater. Res. A, 2014, 102A:628.
[20] Licciardi M, Campisi M, Cavallaro G, Cervello M, Azzolina A, Giammona G. Biomaterials, 2006, 27:2066.
[21] Licciardi M, Cavallaro G, Di Stefano M, Fiorica C, Giammona G. Macromol. Biosci., 2011, 11:445.
[22] Sarpietro M G, Pitarresi G, Ottimo S, Giuffrida M C, Ognibene M C, Fiorica C, Giammona G, Castellit F. Mol. Pharm., 2011, 8:642.
[23] Ognibene M C, Rocco F, Craparo E F, Picone P, Ceruti M, Giammona G. Curr. Nanosci., 2011, 7:747.
[24] Fiorica C, Senior R A, Pitarresi G, Palumbo F S, Giammona G, Deshpande P, MacNeil S. Int. J. Pharm., 2011, 414:104.
[25] Matricardi P, Pitarresi G, Palumbo F S, Di Meo C, Albanese A, Coviello T, Cencetti C, Fiorica C, Giammona G. Macromol. Res. 2011, 19:1264.
[26] Licciardi M, Cavallaro G, Amato G, Fiorica C, Giammona G. React. Funct. Polym., 2012, 72:268.
[27] Scialabba C, Rocco F, Licciardi M, Pitarresi G, Ceruti M, Giammona G. Drug Deliv., 2012, 19:307.
[28] Piccionello A P, Pitarresi G, Pace A, Triolo D, Picone P, Buscemi S, Giammona G. J. Drug Target., 2012, 20:433.
[29] Pitarresi G, Fiorica C, Palumbo F S, Calascibetta F, Giammona G. J. Biomed. Mater. Res. A, 2012, 100A:1565.
[30] Cavallaro G, Triolo D, Licciardi M, Giammona G, Chirico G, Sironi L, Dacarro G, Dona A, Milanese C, Pallavicini P. Biomacromolecules, 2013, 14:4260.
[31] Pitarresi G, Fiorica C, Palumbo F S, Rigogliuso S, Ghersi G, Giammona G. J. Biomed. Mater. Res. A, 2014, 102A:1334.
[32] Sardo C, Nottelet B, Triolo D, Giammona G, Garric X, Lavigne J P, Cavallaro G, Coudane J. Biomacromolecules, 2014, 15:4351.
[33] Pavia F C, Carrubba V L, Brucato V, Palumbo F S, Giammona G. Mat. Sci. Eng. C-Mater., 2014, 41:301.
[34] Cavallaro G, Licciardi M, Amato G, Sardo C, Giammona G, Farra R, Dapas B, Grassi M, Grassi G. Int. J. Pharm., 2014, 466:246.
[35] Cavallaro G, Craparo E F, Sardo C, Lamberti G, Barba A A, Dalmoro A. Int. J. Pharm., 2015, 495:719.
[36] Fiorica C, Palumbo F S, Pitarresi G, Giorgi M, Calascibetta F, Giammona, G. J. Pharm. Pharmacol., 2015, 67:78.
[37] Craparo E F, Licciardi M, Conigliaro A, Palumbo F S, Giammona G, Alessandro R, De Leo G, Cavallaro G. Polymer, 2015, 70:257.
[38] Craparo E F, Porsio B, Mauro N, Giammona G, Cavallaro G. Macromol. Rapid Commun., 2015, 36:1409.
[39] Craparo E F, Porsio B, Bondi M L, Giammona G, Cavallaro G. Polym. Degrad. Stabil., 2015, 119:56.
[40] Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. J. Mater. Chem. B, 2015, 3:250.
[41] Mandracchia D, Denora N, Franco M, Pitarresi G, Giammona G, Trapani G. J. Biomat. Sci.-Polym. E., 2011, 22:313.
[42] Thuy V T T, Lim C W, Park J H, Ahn C H, Kim D. J. Mater. Chem. B, 2015, 3:2978.
[43] Lee M, Jeong J, Kim D. Biomacromolecules, 2015, 16:136.
[44] Yu H, Sun J, Zhang Y T, Zhang G Y, Chu Y F, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2015, 53:1387.
[45] Yu J H, Quan J S, Huang J, Wang C Y, Sun B, Nah J W, Cho M H, Cho C S. Acta Biomater., 2009, 5:2485.
[46] Zhang M, Liu M, Xue Y N, Huang S W, Zhuo R X. Bioconjugate Chem., 2009, 20:440.
[47] Jeon Y S, Bui Q T, An J H, Chung D J, Kim J H. Polym-Korea, 2014, 38:108.
[48] Heo S, Jeon Y S, Kim Y J, Kim S H, Kim J H. J. Coat. Technol. Res., 2013, 10:811.
[49] Mukaya H E, Neuse E W, van Zyl R L, Chen C T. J. Inorg. Organomet. Polym., 2015, 25:367.
[50] Sharma A, Srivastava A. Polym. Chem., 2013, 4:5119.
[51] 杨奇志(Yang Q Z), 刘佳(Liu J), 蒋序林(Jiang X L).化学进展(Progress in Chemistry), 2010, 22(12):2377.
[52] Huynh N T, Jeon Y S, Zrinyi M, Kim J H. Polym. Int., 2013, 62:266.
[53] Lai M H, Lee S, Smith C E, Kim K, Kong H. ACS Appl. Mater. Interfaces, 2014, 6:10821.
[54] Ali S A, Kazi I W, Rahman F. Desalination, 2015, 357:36.
[55] Habraken G J M, Wilsens K H R M, Koning C E, Heise A. Polym. Chem., 2011, 2:1322.
[56] Lu Y, Chau M, Boyle A J, Liu P, Niehoff A, Weinrich D, Reilly R M, Winnik M A. Biomacromolecules, 2012, 13:1296.
[57] Yang W X, Wang L L, Zhu H, Xu R W, Wu Y X. Chinese J. Polym. Sci., 2013, 31:1706.
[58] Chu Y F, Yu H, Zhang Y T, Zhang G Y, Ma Y Y, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:3346.
[59] Kim Y K, Singh B, Jiang H L, Park T E, Jiang T, Park I K, Cho M H, Kang S K, Choi Y J, Cho C S. Eur. J. Pharm. Sci., 2014, 51:165.
[60] Maeda Y, Pittella F, Nomoto T, Takemoto H, Nishiyama N, Miyata K, Kataoka K. Macromol. Rapid Commun., 2014, 35:1211.
[61] Arimura H, Ohya Y, Ouchi T. Macromol. Rapid Commun., 2004, 25:743.
[62] Arimura H, Ohya Y, Ouchi T. Biomacromolecules, 2005, 6:720.
[63] Peng T, Li Y, Ahn D, Kim B S, Lee D S. Macromol. Res., 2013, 21:400.
[64] Zeng X, Guo L, Ma L F. Colloid Polym. Sci., 2015, 293:319.
[65] Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Br. J. Cancer, 2004, 91:1775.
[66] Meo C D, Cilurzo F, Licciardi M, Scialabba C, Sabia R, Paolino D, Capitani D, Fresta M, Giammona G, Villani C, Matricardi P. Pharm. Res., 2015, 32:1557.
[67] 廖荣强(Liao R Q), 刘满塑(Liu M S), 廖霞俐(Liao X L), 杨波(Yang B). 化学进展(Progress in Chemistry), 2015, 27(1):2377.
[68] 梁嘉美(Liang J M), 冯岸超(Feng A C), 袁金颖(Yuan J Y). 化学进展(Progress in Chemistry), 2015, 27(5):533.
[69] Soga O, van Nostrum C F, Fens M, Rijcken C J F, Schiffelers R M, Storm G, Hennink W E. J. Control. Release, 2005, 103:341.
[70] Rijcken C J F, Hofman J W, van Zeeland F, Hennink W E, van Nostrum C F. J. Control. Release, 2007, 124:144.
[71] Ma Y Y, Jiang X L, Zhuo R X. Mater. Lett., 2014, 121:78.
[72] Ma Y Y, Jiang X L, Zhuo R X. J. Polym. Sci. Part A:Polym. Chem., 2013, 51:3917.
[73] Zhang G Y, Zhang Y T, Chu Y F, Ma Y Y, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2015, 53:1296.
[74] Moon J R, Jeon Y S, Zrinyi M, Kim J H. Polym. Int., 2013, 62:1218.
[75] Seo K, Chung S W, Byun Y, Kim D. Int. J. Pharm., 2012, 424:26.
[76] Ma Y Y, Zhang G Y, Li L J, Yu H, Liu J, Wang C Q, Chu Y F, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2016, 54:879.
[77] Harada M, Bobe L, Saito H, Shibata N, Tanaka R, Hayashi T, Kato Y. Cancer Sci., 2011, 102:192.
[78] Takahashi A, Yamamoto Y, Yasunaga M, Koga Y, Kuroda J, Takigahira M, Harada M, Saito H, Hayashi T, Kato Y, Kinoshita T, Ohkohchi N, Hyodo I, Matsumura Y. Cancer Sci., 2013, 104:920.
[79] Wang X J, Wu G L, Lu C C, Zhao W P, Wang Y N, Fan Y G, Gao H, Ma J B. Eur. J. Pharm. Sci., 2012, 47:256.
[80] Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P. J. Am. Chem. Soc., 2010, 132:1500.
[81] Tang R, Ji W, Wang C. Macromol. Biosci., 2010, 10:192.
[82] Thambi T, Deepagan V G, Yoo C K, Park J H. Polymer, 2011, 52:4753.
[83] Lavignac N, Nicholls J, Ferruti P, Duncan R. Macromol. Biosci., 2008, 9:480.
[84] Zhu S, Hong M, Tang G, Qian L, Lin J, Jiang Y, Pei Y. Biomaterials, 2010, 31:1360.
[85] Jin Y, Song L, Su Y, Zhu L, Pang Y, Qiu F, Tong G, Yan D, Zhu B, Zhu X. Biomacromolecules, 2011, 12:3460.
[86] Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, Yang Y, Lim N, Park C G, Kim K. Angew. Chem. Int. Ed., 2010, 49:4405.
[87] Tang L Y, Wang Y C, Li Y, Du J Z, Wang J. Bioconjugate Chem., 2009, 20:1095.
[88] Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. J. Am. Chem. Soc., 2008, 130:6001.
[89] Deng B, Ma P, Xie Y. Nanoscale, 2015, 7:12773.
[90] Gyarmati1 B, Vajna B, Némethy Á, László K, Szilágyi A. Macromol. Biosci., 2013, 13:633.
[91] Gyarmati1 B, Némethy Á, Szilágyi A. RSC Adv., 2014, 4:8764.
[92] Zheng C, Zhang X G, Sun L, Zhang Z P, Li C X. J. Mater. Sci. Mater. Med., 2013, 24:931.
[93] Chu Y F, Yu H, Ma Y Y, Zhang Y T, Chen W H, Zhang G Y, Wei H, Zhang X Z, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:1771.
[94] Tran B N, Bui Q T, Jeon Y S, Park H S, Kim J H. Polym. Bull., 2015, 72:2605.
[95] Guo X, Huang L. Acc. Chem. Res., 2012, 45:971.
[96] Godbey W T, Wu K K, Mikos A G. J. Control. Release, 1999, 60:149.
[97] Akinc A, Thomas M, Klibanov A M, Langer R. J. Gene Med., 2005, 7:657.
[98] Godbey W T, Wu K K, Mikos A G. J. Biomed. Mater. Res., 1999, 45:268.
[99] Zhang G Y, Liu J, Yang Q Z, Zhuo R, Jiang X L. Bioconjugate Chem., 2012, 23:1290.
[100] Liu J, Xu Y, Yang Q, Li C, Hennink W E, Zhuo R X. Acta Biomater., 2013, 9:7758.
[101] Feng T S, Dong X, Tian H Y, Lam M H W, Liang H J, Wei Y, Chen X S. J. Mater. Chem. B, 2014, 2:2725.
[102] Chen J, Dong X, Feng T S, Lin L, Guo Z P, Xia J L, Tian H Y, Chen X S. Acta Biomater., 2015, 26:45.
[103] Dou X B, Hu Y, Zhao N N, Xu F J. Biomaterials, 2014, 35:3015.
[104] Cavallaro G, Licciardi M, Scirè S, Giammona G. Nanomedicine, 2009, 4:291.
[105] Cavallaro G, Scirè S, Licciardi M, Ogris M, Wagner E, Giammona G. J. Control. Release, 2008, 131:54.
[106] Di Gioia S, Sardo C, Belgiovine G, Triolo D, d'Apolito M, Castellani S, Carbone A, Giardino I, Giammona G, Cavallaro G, Conese M. Int. J. Pharm., 2015, 491:359.
[107] Miyata K, Oba M, Nakanishi M, Fukushima S, Yamasaki Y, Koyama H, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2008, 130:16287.
[108] Uchida H, Miyata K, Oba M, Ishii T, Suma T, Itaka K, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2011, 133:15524.
[109] Uchida H, Itaka K, Nomoto T, Ishii T, Suma T, Ikegami M, Miyata K, Oba M, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2014, 136:12396.
[110] Kim H J, Miyata K, Nomoto T, Zheng M, Kim A, Liu X Y, Cabral H, Christie R J, Nishiyama N, Kataoka K. Biomaterials, 2014, 35:4548.
[111] Lee Y, Ishii T, Cabral H, Kim H J, Seo J H, Nishiyama N, Oshima H, Osada K, Kataoka K. Angew. Chem. Int. Ed., 2009, 48:5309.
[112] Lee Y, Miyata K, Oba M, Ishii T, Fukushima S, Han M, Koyama H, Nishiyama N, Kataoka K. Angew. Chem. Int. Ed., 2008, 47:5163.
[113] Gao H, Takemoto H, Chen Q, Naito M, Uchida H, Liu X Y, Miyata K, Kataoka K. Chem. Commun., 2015, 51:3158.
[114] Kim H J, Ishii A, Miyata K, Lee Y, Wu S R, Oba M, Nishiyama N, Kataoka K. J. Control. Release, 2010, 145:141.
[115] Itaka K, Ishii T, Hasegawa Y, Kataoka K. Biomaterials, 2010, 31:3707.
[116] Nomoto T, Fukushima S, Kumagai M, Machitani K, Arnida, Matsumoto Y, Oba M, Miyata K, Osada K, Nishiyama N, Kataoka K. Nat. Commun., 2014, 5:3545.
[1] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[2] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[3] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[4] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[5] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[6] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[7] 韩冬琳, 亓洪昭, 赵瑾, 龙丽霞, 任玉, 原续波. 增强纳米药物载体肿瘤内渗透分布的研究进展[J]. 化学进展, 2016, 28(9): 1397-1405.
[8] 刘雯, 张立, 杨静, 郝雪芳, 李茜, 冯亚凯. 靶向性载体/基因复合物促进内皮细胞增殖[J]. 化学进展, 2016, 28(6): 954-960.
[9] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.
[10] 刘亚杰, 张鹏, 杜建委, 王幽香. 微纳米粒子的形貌调控及其对药物/基因传递体系的影响[J]. 化学进展, 2016, 28(1): 67-74.
[11] 古晓晓, 杜宝吉, 李云辉, 高莹*, 李丹, 汪尔康. 基于纳米材料的基因载体[J]. 化学进展, 2015, 27(8): 1093-1101.
[12] 廖荣强, 刘满朔, 廖霞俐, 杨波. 基于环糊精的智能刺激响应型药物载体[J]. 化学进展, 2015, 27(1): 79-90.
[13] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.
[14] 王赛, 吴斌, 段军飞, 方江邻*, 谌东中. 基于脲基氢键组装的功能超分子凝胶[J]. 化学进展, 2014, 26(01): 125-139.
[15] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
阅读次数
全文


摘要