English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1084-1098 DOI: 10.7536/PC160107 前一篇   后一篇

• 综述与评论 •

β-模拟肽的构象限制在药物设计中的应用

袁硕, 孙德群*   

  1. 山东大学(威海)海洋学院 威海 264209
  • 收稿日期:2016-01-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 孙德群 E-mail:dequn.sun@sdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21472243)资助

The Conformational Restriction of β-Peptidomimetics in Drug Design

Yuan Shuo, Sun Dequn*   

  1. Marine College, Shandong University, Weihai, Weihai 264209, China
  • Received:2016-01-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21472243).
传统肽类药物在体内环境下易水解,具有不稳定性,以β-氨基酸为基本单位的β-肽相比传统的α-肽,药代动力学参数更加良好,因此蕴藏更大的药物开发价值。β-氨基酸构象限制后,可发展为β-模拟肽。构象限制的目的是使β-模拟肽链趋向于形成固定的二级结构,按特定方式折叠,最终具备理想的三维空间结构,嵌合于特定的酶和受体,从而提高目标肽的生物活性和代谢稳定性。本文主要综述β-模拟肽局部修饰和肽链整体环化的构象限制方法以及限制后生物活性或物理化学参数的变化,以此为β-肽类药物的设计原则和方法提供指导,减少设计盲目性。
The traditional peptide drugs are unstable in vivo conditions due to hydrolysis. The β-peptide that composed of β-amino acids has improved pharmacokinetic parameters than α-peptide and is valuable in drug development. The conformation restricted β-amino acids can form the β-peptidomimetics in order to improve its biological activity and metabolic stability. The restricted β-peptidomimetics can form fixed secondary structure and fold with specific way, then it has an ideal three-dimensional structure and embed in specific enzymes or receptors eventually. This review describes the methods of conformational restriction and the changes of biological activity or physical and chemical parameters after conformational restriction for β-peptidomimetics. Two kinds of conformationally restricted β-peptidomimetics including the local conformational restriction and the overall cyclization of β-peptidomimetics are reviewed. This paper could provide guidance for the rational design of β-peptide drugs.

Contents
1 Introduction
2 Local conformational restriction of β-peptides
2.1 Monoalkylating β2 or β3-amino acids
2.2 Dialkylating β2,3-amino acids
2.3 Cα-fluorinated β-amino acids
2.4 N-substituted β-amino acids
2.5 Ring substituted β-amino acids
3 The overall cyclization of β-peptides
3.1 Cyclization between the head and tail
3.2 Cyclization between the side chains
4 Research methods of the conformational restriction
4.1 Circular dichroism spectroscopy
4.2 Infrared spectroscopy
4.3 X-ray diffraction analysis
4.4 Nuclear magnetic resonance
4.5 Theoretical calculations
5 Conclusion

中图分类号: 

()
[1] North M. J. Peptide Sci., 2000.6:301.
[2] 韩宗进(Han Z J), 丁振阎(Ding Z Y). 国外医学药学分册(Foreign Medical Sciences Section On Pharmacy), 1992,19(2):80.
[3] Checco J W, Lee E F, Evangelista M, Sleebs N J, Rogers K, Pettikiriarachchi A, Kershaw N J, Eddinger G A, Belair D G, Wilson J L. J. Am. Chem. Soc., 2015, 137:11365.
[4] Price J L, Horne W S, Gellman S H. J. Am. Chem. Soc., 2010, 132:12378.
[5] Pilsl L K A, Reiser O. Amino Acids, 2011, 41:709.
[6] Seebach D, Matthews L J. Chem. Commun., 1997, 21:2015.
[7] Choi S H, Ivancic M, Guzei I A, Gellman S H. Eur. J. Org. Chem., 2013, 2013:3464.
[8] Steer D L, Lew R A, Perlmutter P, Smith A I, Aguilar M. Peptide Sci., 2002, 8:241.
[9] Vlieghe P, Lisowski V, Martinez J Khrestchatisky M. Drug Discov. Today, 2010, 15:40.
[10] Horne W S, Johnson L M, Ketas T J, Klasse P J, Lu M, Moore J P, Gellman S H. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:14751.
[11] Gellman M A, Richter S, Cao H, Umezawa N, Gellman S H, Rana T M. Org. Lett., 2003, 5:3563.
[12] Hamuro Y, Schneider J P, DeGrado W F. J. Am. Chem. Soc., 1999, 121:12200.
[13] Chu E, Callender M A, Farrell M P, Schmitz J C. Cancer Chemoth. Pharm., 2003, 52:80.
[14] Uoto K, Ohsuki S, Takenoshita H, Ishiyama T, Iimura S, Hirota Y, Mitsui I, Terasawa H, Soga T. Chem. Pharm. Bull., 1997, 45:1793.
[15] 黄佳(Huang J), 邵雷(Shao Lei), 王旻(Wang M). 药物生物技术(Pharmaceutical Biotechnology), 2009, 16(5):486.
[16] Checco J W, Lee E F, Evangelista M, Sleebs N J, Rogers K, Pettikiriarachchi A, Kershaw N J, Eddinger G A, Belair D G, Wilson J L, Eller C H, Raines R T, Murphy W L, Smith B J, Gellman S H, Fairlie W D. J. Am. Chem. Soc., 2015, 137:11365.
[17] English E P, Chumanov R S, Gellman S H, Compton T. J. Biol. Chem., 2006, 281:2661.
[18] Liu D h, DeGrado W F. J. Am. Chem. Soc., 2001, 123:7553.
[19] Demizu Y, Oba M, Okitsu K, Yamashita H, Misawa T, Tanaka M, Kuriharab M, Gellman S H. Org. Biomol. Chem., 2015, 13:5617.
[20] Fraczak O, Lasota A, Kosson P, Lesniak A, Muchowska A, Lipkowski A W, Olma A. Peptides, 2015, 66:13.
[21] Gellman S H,Cheloha R W, Gardella T J. US20140378382A120141225, 2014.
[22] 侯辉(Hou H), 孙德群(Sun D Q). 化学进展(Progress in Chemistry), 2015, 27(9):1260.
[23] Martinek T A, Fulop F. Eur. J. Biochem., 2003, 270:3657.
[24] Seebach D, Overhand M, Kiihnle F N M, Martinoni B. Helv. Chim. Acta, 1996, 79:913.
[25] Seebach D, Gademann K, Schreiber J V, Matthews J L, Hintermann T, Jaun B. Helv. Chim. Acta, 1997, 80:2033.
[26] Wu Y D, Wang D P. J. Am. Chem. Soc.,1999, 121:9352.
[27] Seebach D, Abele S, Schreiber J V, Martinoni B, Nussbaum A K, Schild H, Schulz H, Hennecke H, Woessner R, Bitsch F. Chimia, 1998, 52:734.
[28] Werder M, Hauser H, Abele S, Seebach D. Helv. Chim. Acta, 1999, 82:1774.
[29] Krauthaeuser S, Christianson L A, Powell D R, Gellman S H. J. Am. Chem. Soc., 1997, 119:11719.
[30] Seebach D, Abele S, Gademann K, Jaun B, Angewandte C. Angew. Chem. Int. Ed., 1999, 38:1595.
[31] March T L, Johnstona Martin R, Dugganb P J, Gardiner J. Chem. Biodivers., 2012, 9:2410.
[32] Briggs C R S, O'Hagan D, Howard J A K. Yufit D S. J. Fluorine Chem., 2003, 119:9.
[33] Beilstein L H. J. Org. Chem., 2010, 6:38.
[34] Tyndall J D, Pfeiffer B, Abbenante G, Fairlie D P. Chem. Rev., 2005, 105:793.
[35] Seebach D, Beck A K, Bierbaum D. Chem. Biodivers., 2004, 1:1111.
[36] Uoto K, Takenoshita H, Yoshino T, Hirota Y, Ando S, Mitsui I, Terasawa H, Soga T. Chem. Pharm. Bull., 1998, 46:770.
[37] Nakayama K, Kawato H C, Inagaki H, Nakajima R, Kitamura A, Someya K, Ohta T. Org. Lett., 2000, 2:977.
[38] Gianotti M, Botta M, Brough S, Carletti R, Castiglioni E, Corti C, Dal-Cin M, Fratte S D, Korajac D, Lovric M, Merlo G, Mesic M, Pavone F, Piccol Li, Rast S, Roscic M, Sava A, Smehil M, Stasi L, Togninelli A, Wigglesworth M J. J. Med. Chem., 2010, 53:7778.
[39] Ohba T, Ikeda E, Takei H. Bioorg. Med. Chem. Lett., 1996, 6:1875.
[40] Christianson C V, Montavon T J, Festin G M, Cooke H A, Shen B, Bruner S D. J. Am. Chem. Soc., 2007, 129:15744.
[41] 周家驹(Zhou J J), 雷静(Lei J), 谢桂荣((Xie G R).化学进展(Progress in Chemistry), 2000, 12:332.
[42] Laursen J S, Engel-Andreasen J, Olsen C A. Acc. Chem. Res., 2015, 48:2696.
[43] Hamper B C, Kolodziej S A, Scates A M, Smith R G, Cortez E. J. Org. Chem., 1998, 63:708.
[44] Mickeviciene K, Baranauskaite R, Kantminiene K, Stasevych M, Komarovska P O, Novikov V. Molecules, 2015, 20:3170.
[45] Pomerantz W C, Grygiel T L R, Lai J R, Gellman S H. J. Am.Chem. Soc., 2008, 10:1799.
[46] Cheng R P, Gellman S H, DeGrado W F. Chem. Rev., 2001, 101:3219.
[47] Choi S H, Ivancic M, Guzei I A, Gellman S H. Eur. J. Org. Chem., 2013, 2013:3464.
[48] Lee M R, Raman N, Gellman S H, Lynn D M, Palecek S P. Chem. Biol., 2014, 9:1613.
[49] Pomerantz W C, Yuwono V M, Drake R, Hartgerink J D, Abbott N L, Gellman S H. J. Am. Chem. Soc., 2011, 133:13604.
[50] Thiele C M. Chem. Commun., 2010, 47:502.
[51] Appella D H, LePlae P R, Raguse T L, Gellman S H. J. Org. Chem., 2000, 65:4766.
[52] Appella D H, Barchi J J, Durell S R, Gellman S H. J. Am. Chem. Soc., 1999, 121:2309.
[53] Karlsson A J, Pomerantz W C, Neilsen K J, Gellman S H, Palecek S P. Acs. Chem. Biol., 2009, 4:567.
[54] Tomita T, Iwatsubo T. Curr. Pharm. Des., 2006, 12:661.
[55] Wolfe M S. Neurotherapeutics, 2008, 5:391.
[56] Imamura Y, Watanabe N, Umezawa N, Iwatsubo T, Kato N, Tomita T, Higuchi T. J. Am. Chem. Soc., 2009, 131:7353.
[57] Kornilova A Y, Bihel F, Das C, Wolfe M S. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:3230.
[58] Gellman S H. Acc. Chem. Res., 1998, 31:173.
[59] Bihel F, Das C, Bowman M J, Wolfe M S. J. Med. Chem., 2004, 47:3931.
[60] Appella D H, Christianson L A, Klein D A, Richards M R, Powell D R, Gellman S H. J. Am. Chem. Soc., 1999, 121:7574.
[61] Wang X, Espinosa J F, Gellman S H. J. Am. Chem. Soc., 2000, 122:4821.
[62] Checco J W, Lee E F, Evangelista M, Sleebs N J, Rogers K, Pettikiriarachchi A. J. Am. Chem. Soc., 2015, 137:11365.
[63] Porter E A, Bernard W, Gellman S H. J. Am. Chem. Soc., 2002, 124:7324.
[64] Demizu Y, Oba M, Okitsu K, Yamashita H, Misawa T, Tanaka M, Kurihara M, Gellman S H. Org. Biomol. Chem., 2015, 17:5163.
[65] Peterson-Kaufman K J, Haase H S, Boersma M D, Lee E F, Fairlie W D, Gellman S H. ACS Chem. Biol., 2015, 10:1667.
[66] Ji H, Gomez-Vidal J A, Martasek P, Roman L J, Silverman R B. J. Med. Chem., 2006, 49:6254.
[67] Martin-Vila M, Aguado G P, Alvarez-Larena A, Branchadell V Minguillon C, Giralt E, Ortuno R M, Muray E. Tetrahedron Asymmetry, 2000, 11:3569.
[68] Omura S, Murata M, Imamura N, Iwai Y, Tanaka H. J. Antibiot., 1984, 37:1324.
[69] Angus D, Claridge T D W, Goodman J M, Moreno A, Barker S F, Taillefumier C, Watterson M P, Fleet G W. J. Tetrahedron Lett., 2001, 42:4251.
[70] Smith M D, Fleet G W. J. Peptide Sci., 1999, 10:425.
[71] Jenkinson S F, Harris T, Fleet G W J. Tetrahedron Asymmetry, 2004, 15:2667.
[72] Gnad F, Reiser O. Chem. Rev., 2003, 103:1603.
[73] Koglin N, Zorn C, Beumer R, Carbele C, Bubert C, Sewald N, Reiser O, Beck-Sickinger A G. Angew. Chem. Int. Ed., 2003, 42:202.
[74] Yang D, Qu J, Li B, Ng F F, Wang X C, Cheung K K, Wang D P, Wu Y D. J. Am. Chem. Soc., 1999, 121:589.
[75] Abele S, Seiler P, Seebach D. Helv. Chim. Acta, 1999, 82:1559.
[76] Varie D L, Shih Ch, Hay D A, Andis S L, Corbett T H, Gossett Lynn S, Janisse S K, Martinelli M J, Moher E D, Schultz R M. Bioorg. Med. Chem. Lett., 1999, 9:369.
[77] Kordes M, Brands M, Es-Sayed M, Armin M. Eur. J. Org. Chem., 2005, 2005:3008.
[78] Wanner K T, Sitka I, Allmendinger L, Fuelep G, Hoefner G. Eur. J. Med. Chem., 2013, 65:487.
[79] Arnold U, Hinderaker M P, Nilsson B L, Huck B R, Gellman S H, Raines R T. J. Am. Chem. Soc., 2002, 124:8522.
[80] Pokala N, Handel T M. J. Struct. Biol., 2001, 134:269.
[81] Bornscheuer U, Pohl T, Curr M. Opin. Chem. Biol., 2001, 5:137.
[82] Arnold U, Huck B R, Gellman S H, Raines R T. Protein Sci., 2013, 22:274.
[83] Huck B R, Fisk J D, Gellman S H. Org. Lett., 2000, 2:2607.
[84] Beleboni R O, Carolino R O G, Pizzo A B, Baldan L C, Netto J C, Santos W F, Coimbra N C. Cell. Mol. Neurobiol., 2004, 24:707.
[85] Larsen P K, Falch E, Larsson O M, Schousboe A. Epilepsy Res., 1987, 1:77.
[86] Nieto C T, Gonzalez-Nunez V, Rodríguez R E, Diez D, Garrido N M. Eur. J. Med. Chem., 2015, 101:150.
[87] Rashid M A, Gustafson K R, Boyd M R. J. Nat. Prod., 2000, 63:531.
[88] Murakoshi I, Kubo H, Ikram M, Israr M, Shafi N, Ohmiya S, Otomasu H. Phytochemistry, 1986, 25:2000.
[89] Misono Y, Ito A, Matsumoto J, Sakamoto S, Yamaguchi K, Ishibashi M. Tetrahedron Lett., 2003, 44:4479.
[90] Seebach D, Gademann K, Kimmerlin T, Hoyer D. J. Med. Chem., 2001, 44:2460.
[91] Melacini G, Zhu Q, Osapay G, Goodman M. J. Med. Chem., 1997, 40:2252.
[92] Clark T D, Buehler L K, Ghadiri M R. J. Am. Chem. Soc., 1998, 120:651.
[93] Kritzer J A, Julian T R, Hart S A. J. Am. Chem. Soc., 2005, 127:167.
[94] Arvidsson P I, Rueping M, Seebach D. Chem. Commun., 2001, 7:649.
[95] Cheng R P, DeGrado W F. J. Am. Chem. Soc., 2001, 123:5162.
[96] Hart S A, Bahadoor A B, Matthews E E, Qiu X J, Schepartz A. J. Am. Chem. Soc., 2003, 125:4022.
[97] Kritzer J A, Tirado-Rives J, Hart S A, Lear J D, Jorgensen W L, Schepartz A. J. Am. Chem. Soc., 2005, 127:167.
[98] Cheng R P, Gellman S H, DeGrado W F. Chem. Rev., 2001, 101:3219.
[99] Jacobi A, Seebach D. Cheminform, 1999, 82:1150.
[100] Rueping M, Jaun B, Seebach D. Chem. Commun., 2000, 22:2267.
[101] Seebach D, Schreiber J V, Abele S, Daura X, van Gunsteren W F. Helv. Chim. Acta, 2000, 83:34.
[102] Appella D H, Christianson L A, Karle I L, Powell D R, Gellman S H. J. Am. Chem. Soc.,1999, 121:6206.
[103] Chen F, Song K S, Wu Y D, Yang D. J. Am. Chem. Soc., 2008, 130:743.
[104] Dado G P, Gellman S H. J. Am. Chem. Soc., 1994, 116:1054.
[1] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[2] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[3] 王童, 文姣, 李良春, 郑仁林, 孙德群. 脱氢氨基酸的合成及其在药物研发中的应用[J]. 化学进展, 2020, 32(1): 55-71.
[4] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[5] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[6] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[7] 贾斌, 马养民*, 陈镝, 陈璞, 胡岩. 天然产物吲哚二酮哌嗪生物碱的结构及生物活性[J]. 化学进展, 2018, 30(8): 1067-1081.
[8] 刘吕花, 郑延延*, 张丽芳, 熊成东. 硬组织植入生物活性聚醚醚酮复合材料[J]. 化学进展, 2017, 29(4): 450-458.
[9] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[10] 侯辉, 孙德群. 模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2015, 27(9): 1260-1274.
[11] 杨冬梅, 周宇涵, 常晴, 赵一龙, 曲景平. 三氟甲基烷基酮的生物活性及合成方法[J]. 化学进展, 2014, 26(06): 976-986.
[12] 崔建国, 刘亮, 甘春芳, 肖琦, 黄燕敏. 芳(杂)环甾体化合物的合成及生理活性研究[J]. 化学进展, 2014, 26(0203): 320-333.
[13] 王路, 周百斌, 刘家仁. 抗癌多金属氧酸盐[J]. 化学进展, 2013, 25(07): 1131-1141.
[14] 朱妍妍, 艾嫦, 张嘉, 张正旺, 赵长琦. 具有生物活性的植物内生真菌次生代谢产物[J]. 化学进展, 2011, 23(4): 704-730.
[15] 张本印 王环 沈建伟 杨晓艳 罗晓东 张晓峰. 大戟属三萜类结构及生物活性*[J]. 化学进展, 2010, 22(05): 877-887.