English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 801-813 DOI: 10.7536/PC160102 前一篇   后一篇

• 综述与评论 •

茚及其衍生物的催化不对称合成

何桥2, 殷中琼3, 陈华保2, 张祖民1, 王显祥1, 乐贵洲1,2*   

  1. 1. 四川农业大学理学院 雅安 625014;
    2. 四川农业大学农学院 成都 611130;
    3. 四川农业大学动物医学院 成都 611130
  • 收稿日期:2016-01-01 修回日期:2016-03-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 乐贵洲 E-mail:yueguizhou@sicau.edu.cn
  • 基金资助:
    四川省科技厅应用基础项目(No. 2012JY0118)

Catalytic Asymmetric Syntheses of Indenes and Their Derivatives

He Qiao2, Yin Zhongqiong3, Chen Huabao2, Zhang Zumin1, Wang Xianxiang1, Yue Guizhou1,2*   

  1. 1. College of Science, Sichuan Agricultural University, Ya'an 625014, China;
    2. College of Agricultural Sciences, Sichuan Agricultural University, Chengdu 611130, China;
    3. College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2016-01-01 Revised:2016-03-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the Science & Technology Department of Sichuan Province (No. 2012JY0118) and the "dual support" Project of Sichuan Agricultural University.
茚及其衍生物广泛存在于自然界中,其中多官能团化的茚类化合物大多具有重要的生物活性,因而非常具有成为药物的先导化合物的潜力。特别是茚类化合物的不对称合成吸引了有机化学家们的广泛关注,最近有许多相应的合成方法研究被报道,包括外消旋体拆分、手性辅基及底物诱导的合成和手性催化合成等。本文总结了茚及其衍生物的催化不对称合成研究进展,重点介绍过渡金属及有机小分子不对称催化反应,并对该领域的研究前景进行了展望。
Indenes and their derivatives widely exists in natural world, and some of them bearing multi-functional groups are very potential to become the lead compounds in drug because of their important bioactivities. In particular, asymmetric syntheses of indenes have attracted the extensive attention of organic chemists. Recently, many synthetic methods of them have been reported, including resolution of racemic mixture, syntheses of chiral auxiliary or substrate's induction, as well as chiral catalytic synthesis. In this review, we summarize the asymmetric syntheses of these compounds, and focus on the transition metal-catalyzed and organocatalytic asymmetric reaction. Finally, the further research on this field is also discussed.

Contents
1 Introduction
2 Catalytic asymmetric syntheses of indenes and their derivatives
2.1 Indene
2.2 Indanone
2.3 Indane
2.4 Indanol
2.5 Other derivatives
3 Conclusion

中图分类号: 

()
[1] Minegishi H, Futamura Y, Fukashiro S, Muroi M, Kawatani M, Osada H, Nakamura H. J. Med. Chem., 2015, 58: 4230.
[2] Conlon K, Christy C, Westbrook S, Whitlock G, Roberts L, Stobie A, McMurray G. J. Pharmacol. Exp. Ther., 2009, 330: 892.
[3] Apparsundaram S, Stockdale D J, Henningsen R A, Milla M E, Martin R S. J. Pharmacol. Exp. Ther., 2008, 327: 982.
[4] Svendsen O, Arnt J, Boeck V, Bøgesø K, Christensen A, Hyttel J, Larsen J J. Drug Dev. Res., 1986, 7: 35.
[5] Treinen K, Louden C, Dennis M, Wier P. Teratology, 1999, 59: 51.
[6] Ohlstein E H, Nambi P, Lago A, Hay D, Beck G, Fong K L, Eddy E P, Smith P, Ellens H, Elliott J D. J. Pharmacol. Exp. Ther., 1996, 276: 609.
[7] Barone F, White R, Elliott J, Feuerstein G, Ohlstein E. J. Cardiovasc. Pharmacol., 1995, 26: 404.
[8] Vlasses P H, Irvin J D, Huber P B, Lee R B, Ferguson R K, Schrogie J J, Zacchei A G, Davies R O, Abrams W B. Clin. Pharmacol. Ther., 1981, 29: 798.
[9] Davies I W, Senanayake C H, Larsen R D, Verhoeven T R, Reider P J. Tetrahedron Lett., 1996, 37: 1725.
[10] Kurosu M, Porter J R, Foley M A. Tetrahedron Lett., 2004, 45: 145.
[11] Kerr M S, de Alaniz J R, Rovis T. J. Org. Chem., 2005, 70: 5725.
[12] He M, Struble J R, Bode J W. J. Am. Chem. Soc., 2006, 128: 8418.
[13] Struble J R, Kaeobamrung J, Bode J W. Org. Lett., 2008, 10: 957.
[14] Boger D L, Hueter O, Mbiya K, Zhang M. J. Am. Chem. Soc., 1995, 117: 11839.
[15] Hong B, Li C, Wang Z, Chen J, Li H, Lei X. J. Am. Chem. Soc., 2015, 137: 11946.
[16] Shi Y, Yang B, Cai S, Gao S. Angew. Chem. Int. Ed., 2014, 53: 9539.
[17] Thommen C, Jana C K, Neuburger M, Gademann K. Org. Lett., 2013, 15: 1390.
[18] Deng J, Zhou S, Zhang W, Li J, Li R, Li A. J. Am. Chem. Soc., 2014, 136: 8185.
[19] Kheira H, Li P, Xu J. J. Mol. Catal. A: Chem., 2014, 391: 168.
[20] Hu J, Yan J, Chen J, Pang Y, Li X. MedChemComm, 2015, 6: 1318.
[21] Da Silva Barbosa J, Da Silva G V J, Constantino M G. Tetrahedron Lett., 2015, 56: 4649.
[22] Sudhakar G, Satish K. Chem.Eur. J., 2015, 21: 6475.
[23] Cai S, Xiao Z, Shi Y, Gao S. Chem.Eur. J., 2014, 20: 8677.
[24] Taylor J G, da Silva Ribeiro R, Correia C R D. Tetrahedron Lett., 2011, 52: 3861.
[25] Gabriele B, Mancuso R, Veltri L. Chem.Eur. J., 2016, 22:5056.
[26] 丁奎岭(Ding K L), 范青华(Fan Q H). 化学通讯(Chemical Newsletter), 2009,(6): 22.
[27] 麻远(Ma Y), 殷巍(Yin W), 赵玉芬(Zhao Y F). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28(1): 37.
[28] 柴凤兰(Chai F L), 徐海云(Xu H Y). 化工进展(Chemical Industry and Enginerring Progress), 2014, 33(11): 3045.
[29] 段义杰(Duan Y J), 刘建利(Liu J L), 王翠玲(Wang C L). 有机化学(Chinese Journal of Organic Chemistry), 2010, 30(7): 988.
[30] Vilums M, Heuberger J, Heitman L H, IJzerman A P. Med. Res. Rev., 2015, 35: 1097.
[31] Enders M, Baker R W. Curr. Org. Chem., 2006, 10: 937.
[32] Borie C, Ackermann L, Nechab M. Chem. Soc. Rev., 2016, 45: 1368.
[33] Yue G, Lei K, Hirao H, Zhou J. Angew. Chem. Int. Ed., 2015, 54: 6531.
[34] 乐贵洲(Yue G Z), 黄轩(Huang X), 刘波(Liu B). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33(6): 1167.
[35] 乐贵洲(Yue G Z), 杨立(Yang L), 袁长春(Yuan C C), 杜彪(Du B), 刘波(Liu B). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33(1): 90.
[36] Yue G, Yang L, Yuan C, Jiang X, Liu B. Org. Lett., 2011, 13: 5406.
[37] Yue G, Yang L, Yuan C, Du B, Liu B. Tetrahedron, 2012, 68: 9624.
[38] Yang L, Yue G, Yuan C, Du B, Deng H, Liu B. Synlett, 2014, 25: 2471.
[39] 乐贵洲(Yue G Z). 四川农业大学学报(Journal of Sichuan Agricultural University), 2012, 30(1): 82.
[40] Zhou F, Yang M, Lu X. Org. Lett., 2009, 11: 1405.
[41] Martínez A, García-García P, Fernández-Rodríguez M A, Rodríguez F, Sanz R. Angew. Chem. Int. Ed., 2010, 49: 4633.
[42] Sanjuán A M, Rashid M A, García-García P, Martínez-Cuezva A, Fernández-Rodríguez M A, Rodríguez F, Sanz R. Chem.Eur. J., 2015, 21: 3042.
[43] Tran D N, Cramer N. Angew. Chem. Int. Ed., 2011, 50: 11098.
[44] Campolo D, Gastaldi S, Roussel C, Bertrand M P, Nechab M. Chem. Soc. Rev., 2013, 42: 8434.
[45] Egi M, Shimizu K, Kamiya M, Ota Y, Akai S. Chem. Commun., 2015, 51: 380.
[46] Arif T, Borie C, Tintaru A, Naubron J V, Vanthuyne N, Bertrand M P, Nechab M. Adv. Synth. Catal., 2015, 357: 3611.
[47] Yeom H S, Lee Y, Jeong J, So E, Hwang S, Lee J E, Lee S S, Shin S. Angew. Chem. Int. Ed., 2010, 49: 1611.
[48] Qian D, Zhang J. Chem.Eur. J., 2013, 19: 6984.
[49] Ji K, Zheng Z, Wang Z, Zhang L. Angew. Chem. Int. Ed., 2015, 54: 1245.
[50] Willis M C. Chem. Rev., 2009, 110: 725.
[51] Kundu K, McCullagh J V, Morehead A T. J. Am. Chem. Soc., 2005, 127: 16042.
[52] Natori Y, Anada M, Nakamura S, Nambu H, Hashimoto S. Heterocycles, 2006, 70: 635.
[53] ShintaniR, Yashio K, Nakamura T, Okamoto K, Shimada T, Hayashi T. J. Am. Chem. Soc., 2006, 128: 2772.
[54] Shintani R, Hayashi T. Org. Lett., 2005, 7: 2071.
[55] Shintani R, Takatsu K, Hayashi T. Angew. Chem. Int. Ed., 2007, 46: 3735.
[56] Matsuda T, Makino M, Murakami M. Org. Lett., 2004, 6: 1257.
[57] Matsuda T, Makino M, Murakami M. Angew. Chem. Int. Ed., 2005, 44: 6631.
[58] Matsuda T, Shigeno M, Makino M, Murakami M. Org. Lett., 2006, 8: 3379.
[59] Yu Y N, Xu M H. J. Org. Chem., 2013, 78: 2736.
[60] Minatti A, Zheng X, Buchwald S L. J. Org. Chem., 2007, 72: 9253.
[61] Xie J H, Zhou Q L. Acc. Chem. Res., 2008, 41: 581.
[62] Li X H, Zheng B H, Ding C H, Hou X L. Org. Lett., 2013, 15: 6086.
[63] Yang J, Yoshikai N. J. Am. Chem. Soc., 2014, 136: 16748.
[64] 孙小宇(Sun X Y), 吴劼(Wu J). 有机化学(Chinese Journal of Organic Chemistry), 2006, 26(6): 745.
[65] 姜岚(Jiang L), 李争宁(Li Z N), 赵德峰(Zhao D F). 化学进展(Progress in Chemistry), 2009, 21(6): 1229.
[66] Flanigan D M, Romanov-Michailidis F, White N A, Rovis T. Chem. Rev., 2015, 115: 9307.
[67] Janssen-Müller D, Schedler M, Fleige M, Daniliuc C G, Glorius F. Angew. Chem. Int. Ed., 2015, 54: 12492.
[68] Kerr M S, Rovis T. J. Am. Chem. Soc., 2004, 126: 8876.
[69] Thalji R K, Ellman J A, Bergman R G. J. Am. Chem. Soc., 2004, 126: 7192.
[70] Tran D N, Cramer N. Angew. Chem. Int. Ed., 2010, 49: 8181.
[71] Tran D N, Cramer N. Angew. Chem. Int. Ed., 2013, 52: 10630.
[72] Matsuda T, Watanuki S. Org. Biomol. Chem., 2015, 13: 702.
[73] Soldi C, Lamb K N, Squitieri R A, González-López M, Di Maso M J, Shaw J T. J. Am. Chem. Soc., 2014, 136: 15142.
[74] Albicker M R, Cramer N. Angew. Chem. Int. Ed., 2009, 48: 9139.
[75] Schuster C H, Coombs J R, Kasun Z A, Morken J P. Org. Lett., 2014, 16: 4420.
[76] Martin N, Pierre C, Davi M, Jazzar R, Baudoin O. Chem.Eur. J., 2012, 18: 4480.
[77] Holstein P M, Vogler M, Larini P, Pilet G, Clot E, Baudoin O. ACS Catal., 2015, 5: 4300.
[78] Hu J, Hirao H, Li Y, Zhou J S. Angew. Chem. Int. Ed., 2013, 52: 8676.
[79] Watson M P, Jacobsen E N. J. Am. Chem. Soc., 2008, 130: 12594.
[80] Seiser T, Roth O A, Cramer N. Angew. Chem. Int. Ed., 2009, 48: 6320.
[81] Seiser T, Cramer N. Angew. Chem. Int. Ed., 2010, 49: 10163.
[82] Nishimura T, Guo X X, Hayashi T. Chem. Asian J., 2008, 3: 1505.
[83] Guo X X, Sawano T, Nishimura T, Hayashi T. Tetrahedron: Asymm., 2010, 21: 1730.
[84] Calder E D D, Sutherland A. Org. Lett., 2015, 17: 2514.
[85] Calder E D D, Sutherland A. Synfacts, 2015, 11: 854.
[86] Brekan J A, Reynolds T E, Scheidt K A. J. Am. Chem. Soc., 2010, 132: 1472.
[87] Yuan H, Hu J, Gong Y. Tetrahedron: Asymm., 2013, 24: 699.
[88] Loh C C, Atodiresei I, Enders D. Chem.Eur. J., 2013, 19: 10822.
[89] Loh C C, Hack D, Enders D. Chem. Commun., 2013, 49: 10230.
[90] Loh C C, Chauhan P, Hack D, Lehmann C, Enders D. Adv. Synth. Catal., 2014, 356: 3181.
[91] Yang J W, Hechavarria F M T, List B. J. Am. Chem. Soc., 2005, 127: 15036.
[92] Phillips E M, Wadamoto M, Chan A, Scheidt K A. Angew. Chem. Int. Ed., 2007, 46: 3107.
[93] Li Y, Feng Z, You S L. Chem. Commun., 2008, 44: 2263.
[94] Biswas A, Sarkar S D, Fröhlich R, Studer A. Org. Lett., 2011, 13: 4966.
[95] Belmessieri D, Morrill L C, Simal C, Slawin A M, Smith A D. J. Am. Chem. Soc., 2011, 133: 2714.
[96] Li N, Liu G G, Chen J, Pan F F, Wu B, Wang X W. Eur. J. Org. Chem., 2014, 2014: 2677.
[97] Chua P J, Tan B, Yang L, Zeng X, Zhu D, Zhong G. Chem. Commun., 2010, 46: 7611.
[98] Johnston C P, Kothari A, Sergeieva T, Okovytyy S I, Jackson K E, Paton R S, Smith M D. Nat. Chem., 2015, 7: 171.
[99] Oswald C L, Peterson J A, Lam H W. Org. Lett., 2009, 11: 4504.
[100] Suzuki Y, Yazaki R, Kumagai N, Shibasaki M. Chem. Eur. J., 2011, 17: 11998.
[101] Nishimura T, Ebe Y, Hayashi T. J. Am. Chem. Soc., 2013, 135: 2092.
[102] Nishimura T, Nagamoto M, Ebe Y, Hayashi T. Chem. Sci., 2013, 4: 4499.
[103] Reddy C S, Burns D J, Khan I, Lam H W. Angew. Chem. Int. Ed., 2015, 54: 13975.
[1] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[2] 徐铁齐*. 极性乙烯基单体立体选择性聚合催化剂[J]. 化学进展, 2017, 29(2/3): 285-292.
[3] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[4] 蒋坤, 陈应春. 不对称三烯胺催化的发展[J]. 化学进展, 2015, 27(2/3): 137-145.
[5] 刘湘, 潘争光, 许建和. 手性芳基邻二醇的不对称合成[J]. 化学进展, 2011, 23(5): 903-913.
[6] 方玲 石岩 朱成建. 有机小分子催化的β-酮酯不对称α-官能化反应[J]. 化学进展, 2010, 22(09): 1679-1686.
[7] 朱映光 翟昌伟 胡文浩. 不对称多组分反应[J]. 化学进展, 2010, 22(07): 1380-1396.
[8] 李楠 刘伟军 龚流柱. 手性有机小分子催化的最新进展*[J]. 化学进展, 2010, 22(07): 1362-1379.
[9] 马大友. 生物催化不对称合成beta-羟基酸衍生物[J]. 化学进展, 2008, 20(11): 1687-1693.
[10] 方钊,唐瑞仁,罗佐文. 烯酮中间体及其在不对称环加成反应中的应用[J]. 化学进展, 2008, 20(10): 1544-1552.
[11] 王桂霞,王乃兴,唐石,于金兰,汤新亮. 具有生物活性的色满衍生物不对称合成研究*[J]. 化学进展, 2008, 20(04): 518-525.
[12] 许家喜. 微波与有机化学反应的选择性*[J]. 化学进展, 2007, 19(05): 700-712.
[13]

伍贻康,吴毓林

.

有机合成的新世纪――-有机合成近年进展鉴赏

[J]. 化学进展, 2007, 19(01): 6-34.
[14] 童林荟 鲁润华 井上佳久 . 天然和修饰环糊精的不对称光化学[J]. 化学进展, 2006, 18(05): 533-541.
[15] 肖玉梅,傅滨,李楠,覃兆海. DNA模板指导的有机合成[J]. 化学进展, 2005, 17(04): 692-699.
阅读次数
全文


摘要

茚及其衍生物的催化不对称合成