English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 83-90 DOI: 10.7536/PC150742 前一篇   后一篇

• 综述与评论 •

重金属离子印迹技术

傅骏青1,2, 王晓艳2,3, 李金花2, 陈令新1,2*   

  1. 1. 曲阜师范大学化学与化工学院 山东省生命有机分析重点实验室 曲阜 273165;
    2. 中国科学院烟台海岸带研究所 中国科学院海岸带环境过程与生态修复重点实验室 山东省海岸带环境过程重点实验室 烟台 26400;
    3. 滨州医学院药学院 烟台 264003
  • 收稿日期:2015-07-01 修回日期:2015-08-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 陈令新 E-mail:lxchen@yic.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21275158,21477160)资助

Ion Imprinting Technology for Heavy Metal Ions

Fu Junqing1,2, Wang Xiaoyan2,3, Li Jinhua2, Chen Lingxin1,2*   

  1. 1. Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
    2. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai 26400;
    3. School of Pharmacy, Binzhou Medical University, Yantai 264003, China
  • Received:2015-07-01 Revised:2015-08-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21275158, 21477160).
分子印迹技术(molecular imprinting technology,MIT)是指制备对特定目标分子具有专一识别性能的聚合物技术。离子印迹技术(ion imprinting technology,IIT)以离子为模板,通过静电作用、配位作用等与单体结合形成螯合物,聚合后用酸性试剂等将模板离子洗脱,最终制得具有与目标金属离子相对应的三维孔穴结构的印迹材料。作为分子印迹技术的重要分支,离子印迹技术因存在配位作用而具有很多优势,近年来得到了快速的发展。重金属离子是离子印迹领域最典型且最受关注的目标物。本文介绍了离子印迹技术原理、制备及其在金属的痕量和超痕量分析中的优势,针对环境监测中典型重金属污染离子(铅、汞、铜、镉、铬、砷)的印迹聚合物应用进行了简述,并对金属离子印迹技术未来的挑战与发展作出了展望。
Molecular imprinting technology(MIT) is known as a technology for creation of tailor-made binding sites with memory of the shape, size and functional groups of the template molecules. Ion imprinting technology is the technology that creating three-dimensional cavity structures in a polymer matrix, i.e., ion imprinting polymers (IIPs) by the copolymerization of functional monomers and cross-linkers in the presence of target ion that act as template molecules based on coordination or electrostatic interactions. After removal of the template ion with acidic reagent, recognition cavities complementary to the template ion were formed in the highly cross-linked polymer matrix. Owing to the special coordination, ion imprinting technology, as an important branch of MIT, obtained the rapid development. Heavy metal ion as the most typical water-soluble ion, has gained increasing concerns. So, effective identification and quantification of heavy metal ions by using ion imprinting polymers are highly crucial. The principles, synthesis strategies of ion imprinting and advantages on analysis of trace and ultra-trace metal are introduced in the review.Then, the applications of ion imprinted polymers for typical heave metal ions from environmental monitoring including lead, mercury, copper, cadmium, chromium and arsenic ions are summarized. Finally, the challenges and possible solution strategies, and future trends are proposed.

Contents
1 Introduction
2 Ion imprinting technology
2.1 Principles of ion imprinting
2.2 Preparation of ion imprinting
2.3 Superiority
3 Typical heave metal ion imprinted polymers and their applications
3.1 Pb-IIPs
3.2 Hg-IIPs and CH3Hg-IIPs
3.3 Cu-IIPs
3.4 Cd-IIPs
3.5 Cr-IIPs
3.6 As-IIPs
4 Conclusion and outlook

中图分类号: 

()
[1] 张慧(Zhang H), 何华(He H), 李洁(Li J), 李卉(Li H), 姚玉阳(Yao Y Y).化学进展(Progress in Chemistry), 2011, 23(10): 2140.
[2] Nishide H, Tsuchida E. Makromol. Chem., 1976, 177: 2295.
[3] Wulff G. Angew. Chem. Int. Ed., 1995, 34: 1812.
[4] Andersson L, Sellergren B, Mosbach K. Tetrahedron Lett., 1984, 25: 5211.
[5] Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N. J. Am. Chem. Soc., 1995, 117: 7105.
[6] Chen L X, Xu S F, Li J H. Chem. Soc. Rev., 2011, 40: 2922.
[7] 朱琳琰(Zhu L Y), 张荣华(Zhang R H), 朱志良(Zhu Z L). 化学通报(Chemistry), 2010, 73: 326.
[8] Gupta R, Kumar A. Biotechnol. Adv., 2008, 26: 533.
[9] 吕运开(Lv Y K), 严秀平(Yan X P).分析化学(Chinese Journal of Analytical Chemistry), 2005, 2(33): 254.
[10] Lofgreen J E, Ozin G A. Chem. Soc. Rev., 2014, 43: 911.
[11] Fu J Q, Chen L X, Li J H, Zhang Z. J. Mater. Chem. A, 2015, 3: 13598.
[12] Zhang Z, Xu S F, Li J H, Xiong H, Peng H L, Chen L X. J. Agric. Food. Chem., 2012, 60: 180.
[13] Ma Y, Zhang Y, Zhao M, Guo X Z, Zhang H Q. Chem. Commun., 2012, 48: 6217.
[14] 张栓红(Zhang S H), 孙昌梅(Sun C M), 曲荣君(Qu R J). 高分子通报(Polymer Bulletin), 2010, 4: 17.
[15] Dakova I, Yordanova T, Karadjova I. J. Hazard. Mater., 2012, 231: 49.
[16] Qin L, He X W, Zhang W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 807.
[17] Xu S F, Lu H Z, Li J H, Song X L, Wang A X, Chen L X, Han S B. ACS Appl. Mater. Interfaces, 2013, 5: 8146.
[18] Zhang W, He X W, Li W Y, Zhang Y K. Chem. Commun., 2012, 48: 1757.
[19] Zhang W, Liu W, Li P, Xiao H B, Wang H, Tang B. Angew. Chem. Int. Ed., 2014, 53: 12489.
[20] Tavengwa N T, Cukrowska E, Chimuka L. J. Hazard. Mater., 2014, 267: 221.
[21] Zhang Z, Li J H, Fu J Q, Chen L X. RSC Adv., 2014, 4: 20677.
[22] Cai X Q, Li J H, Zhang Z, Yang F F, Dong R C, Chen L X. ACS Appl. Mater. Interfaces, 2014, 6: 305.
[23] Bali P B, Jauhari D, Verma A. Talanta, 2014, 120: 398.
[24] Barciela-Alonso M C, Plata-García V, Rouco-López A, Moreda-Piñeiro A, Bermejo-Barrera P. Microchem. J., 2014, 114: 106.
[25] Xu S F, Lu H Z, Zheng X W, Chen L X. J. Mater. Chem.C, 2013, 1: 4406.
[26] 李金花(Li J H), 温莹莹(Wen Y Y), 陈令新(Chen L X). 色谱(Chinese Journal of Chromatography), 2013, 31: 181.
[27] 王玲玲(Wang L L), 闫永胜(Yan Y S), 邓月华(Deng Y H), 李春香(Li C X), 徐婉珍(Xu W Z). 分析化学(Chinese Journal of Analytical Chemistry), 2009, 4(37), 537.
[28] Li C X, Gao J, Pan J M, Zhang Z L, Yan Y S. J. Environ. Sci., 2009, 21: 1722.
[29] 杨潇(Yang X), 张朝晖(Zhang Z H), 张华斌(Zhang H B), 张明磊(Zhang M L), 胡宇芳(Hu Y F), 罗丽娟(Luo L J), 聂丽华(Nie L H). 分析化学(Chinese Journal of Analytical Chemistry), 2011, 39: 34.
[30] Aboufazeli F, Lotfi Zadeh Zhad H R, Sadeghi O, Karimi M, Najafi E. Food Chem., 2013, 141: 3459.
[31] Luo X, Liu L, Deng F, Luo S. J. Mater. Chem. A, 2013, 1: 8280.
[32] He J, Liu A, Chen J P. J. Colloid Interface Sci., 2015, 439: 162.
[33] Garcia-Otero N, Teijeiro-Valino C, Otero-Romani J, Pena-Vazquez E, Moreda-Pineiro A, Bermejo-Barrera P. Anal. Bioanal. Chem., 2009, 395: 1107.
[34] Tarley C R, Andrade F N, de Oliveira F M, Corazza M Z, de Azevedo L F, Segatelli M G. Anal. Chim. Acta, 2011, 703: 145.
[35] Alizadeh T, Ganjali M R, Zare M. Anal. Chim. Acta, 2011, 689: 52.
[36] Xu S F, Chen L X, Li J H, Guan Y F, Lu H Z. J. Hazard. Mater., 2012, 237/238: 347.
[37] Zhang Z, Li J H, Song X L, Ma J P, Chen L X. RSC Adv., 2014, 4: 46444.
[38] 付坤(Fu K), 高云玲(Gao Y L), 姚克俭(Yao K J). 分析测试学报(Journal of Instrumental Analysis), 2012, 31: 1001.
[39] Khajeh M, Sanchooli E. Environ. Chem. Lett., 2009, 9: 177.
[40] Khajeh M, Sanchooli E. Biol. Trace Elem. Res., 2010, 135: 325.
[41] Khajeh M, Sanchooli E. Int. J. Environ. Anal. Chem., 2011, 91: 1310.
[42] Dam H A, Kim D. Ind. Eng. Chem. Res., 2009, 48: 5679.
[43] Yilmaz V, Hazer O, Kartal S. Talanta, 2013, 116: 322.
[44] Hoai N T, Yoo D K, Kim D. J. Hazard. Mater., 2010, 173: 462.
[45] Dakova I, Karadjova I, Ivanov I, Georgieva V, Evtimova B, Georgiev G. Anal. Chim. Acta, 2007, 584: 196.
[46] Dakova I, Karadjova I, Georgieva V, Georgiev G. J. Sep. Sci., 2012, 35: 2805.
[47] Buica G O, Bucher C, Moutet J C, Royal G, Saint-Aman E, Ungureanu E M. Electroanalysis, 2009, 21: 77.
[48] Zhang N, Hu B. Anal. Chim. Acta, 2012, 723: 54.
[49] Candan N, Tüzmen N, Andac M, Andac C A, Say R, Denizli A. Mater. Sci. Eng., C, 2009, 29: 144.
[50] Chen A W, Zeng G M, Chen G Q, Hu X J, Yan M, Guan S, Shang C, Lu L H, Zou Z J, Xie G X. Chem. Eng. J., 2012, 191: 85.
[51] Tan J, Wang H F, Yan X P. Biosens. Bioelectron., 2009, 24: 3316.
[52] Prabhakaran D, Yuehong M, Nanjo H, Matsunaga H. Anal. Chem., 2007, 79: 4056.
[53] Tabakli B, Topcu A A, Doker S, Uzun L. Ind. Eng. Chem. Res., 2015, 54: 1816.
[54] Liu Y, Meng X G, Han J, Liu Z C, Meng M J, Wang Y, Chen R J, Tian S. J. Sep. Sci., 2013, 36: 3949.
[55] Tavengwa N T, Cukrowska E, Chimuka L. Talanta, 2013, 116: 670.
[56] Bayramoglu G, Arica M Y. J. Hazard. Mater., 2011, 187: 213.
[57] Le D?niewska B, Godlewska-?y?kiewicz B, Wilczewska A Z. Microchem. J., 2012, 105: 88.
[58] An F Q, Gao B. Desalination, 2009, 249: 1390.
[59] Liu B J, Wang D F, Li H Y, Xu Y, Zhang L. Desalination, 2011, 272: 286.
[60] Liu B J, Wang D F, Gao X, Zhang L, Xu Y, Li Y J. Eur. Food Res. Technol., 2011, 232: 911.
[61] Tsoi Y K, Ho Y M, Leung K S. Talanta, 2012, 89: 162.
[62] Fan H T, Fan X L, Li J, Guo M M, Zhang D S, Yan F, Sun T. Ind. Eng. Chem. Res., 2012, 51: 5216.
[63] 史瑞雪(Shi R X), 郭成海(Guo C H), 邹小红(Zou X H), 朱春野(Zhu C Y), 左言军(Zuo Y J), 邓云度(Deng Y D). 化学进展(Progress in Chemistry), 2002, 14(3): 182.
[1] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[2] 何安恩, 解姣姣, 苑春刚. 大气颗粒物重金属形态分析[J]. 化学进展, 2021, 33(9): 1627-1647.
[3] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[4] 陈冠益, 韩克旋, 刘彩霞, 旦增, 布多. 污泥中重金属处理方法[J]. 化学进展, 2021, 33(6): 998-1009.
[5] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[6] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[7] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[8] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[9] 陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 多巴胺功能材料在水污染控制中的应用[J]. 化学进展, 2019, 31(4): 571-579.
[10] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[11] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[12] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[13] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[14] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[15] 刘榆, 傅瑞琪, 楼子墨, 方文哲, 王卓行, 徐新华. 功能化碳质材料的制备及其对水中重金属的去除[J]. 化学进展, 2015, 27(11): 1665-1678.
阅读次数
全文


摘要

重金属离子印迹技术