English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1093-1101 DOI: 10.7536/PC150163 前一篇   后一篇

• 综述与评论 •

基于纳米材料的基因载体

古晓晓1,2, 杜宝吉2, 李云辉1, 高莹*1, 李丹*2, 汪尔康*2   

  1. 1. 长春理工大学化学与环境工程学院 长春 13002;
    2. 中国科学院长春应用化学研究所 电分析化学国家重点实验室 长春 130022
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 高莹, 李丹, 汪尔康 E-mail:zjw1095@sina.com;lidan@ciac.ac.cn;ekwang@ciac.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 31301177, 21190040)资助

Vectors Based on Nanomaterials for Gene Delivery

Gu Xiaoxiao1,2, Du Baoji2, Li Yunhui1, Gao Ying*1, Li Dan*2, Wang Erkang*2   

  1. 1. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 13002;
    2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31301177, 21190040).
基因疗法是治疗基因变异引起的先天性遗传疾病和后天获得性疾病以及癌症的新型有效方法。外源基因在细胞中安全、高效、稳定的表达是基因治疗成功的关键,这与基因治疗所使用的载体系统息息相关。基因载体主要分为病毒载体和非病毒载体两大类:病毒载体的转染效率较高,但副作用较大;非病毒载体作为一种新型的基因传递系统,可以弥补病毒载体的缺陷,尽管其转染效率稍逊于病毒载体,但在基因治疗领域具有不可替代的作用。随着纳米技术的出现和蓬勃发展,基于纳米材料的基因载体研究受到越来越多的关注。纳米基因载体具有如下潜在的优势:它制备相对简单,易于对其进行多功能的修饰;具有良好的生物相容性,一般不会引起强烈的机体免疫反应;粒径普遍很小,容易穿过人体的组织间隙而被细胞吸收,基因转运效率较高;可以较有效保护其所携带外源基因,利于基因更高效地表达。本文主要对基于金属、无机非金属、阳离子聚合物和脂质体纳米材料作为基因载体的研究进展进行综述和展望。
Gene therapy has been regarded as a potential treatment for many diseases, including inherited or acquired ones and cancers. Safe, efficient and stable expression of exogenous genes in target cells is the key issue of gene therapy, which depends on the gene delivery system remarkably. Generally, there are two types of gene carriers: viral and non-viral vectors. The transfection efficiency of viral vectors is always higher than that of nonviral ones, but the side effects of viral vectors, such as immune response and random insert of the genes into the host chromosomes, are inevitable during the gene therapy. As the new gene transfer system, non-viral vectors make up for the defects of viral ones and play an irreplaceable role in gene therapy. With the emergence and vigorous development of nanotechnology, vectors based on nanomaterials named nanocarriers have gained more and more attentions for their potential advantages in gene delivery: easily being prepared and multifunctional modified; possessing good biocompatibility and causing less immune response; easily passing through tissues and being absorbed by the target cells with higher gene delivery efficiency; effectively protecting the exogenous genes from being quickly destroyed by the enzymes in tissues or cells. In the review, we mainly focus on the investigations of nanocarriers based on metal, inorganic and non-metal, cationic polymer and liposome nanoparticles and prospect the potential development of the nanocarriers.

Contents
1 Introduction
2 Nanocarriers based on metal nanoparticles
2.1 Magnetic nanoparticles
2.2 Gold nanoparticles
3 Nanocarriers based on inorganic and non-metal nanoparticles
3.1 Carbon nanotubes
3.2 Silica nanoparticles
4 Nanocarriers based on cationic polymers
4.1 Polyethyleneimine nanoparticles
4.2 Chitosan nanoparticles
5 Nanocarriers based on liposomes
6 Conclusion

中图分类号: 

()
[1] Dizaj S M, Jafari S, Khosroushahi A Y. Nanoscale Res. Lett., 2014, 9: 252.
[2] Jolly D. Cancer Gene Ther., 1994, 1: 51.
[3] Rejman J, Oberle V, Zuhorn I, Hoekstra D. Biochem. J., 2004, 377:159.
[4] Davis M E, Zuckerman J E, Choi C H J, Seligson D, Tolcher A, Alabi C A, Yen Y, Heidel J D, Ribas A. Nature, 2010, 464: 1067.
[5] Xu Z P, Zeng Q H, Lu G Q, Yu A B. Chem. Eng. Technol., 2006, 61: 1027.
[6] Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N. Chem. Rev., 2008, 108: 2064.
[7] Mah C, Zolotukhin I, Fraites T J, Dobson J, Batich C, Byrne B J. Mol. Ther., 2000, 1: S239.
[8] Xiang J J, Tang J Q, Zhu S G, Nie X M, Lu H B, Shen S R, Li X L, Tang K, Zhou M, Li G Y. J. Gene Med., 2003, 5: 803.
[9] Pan X, Guan J, Yoo J W, Epstein A J, Lee L J, Lee R J. Int. J. Phytorem., 2008, 358: 263.
[10] Zhang Z B, Song L N, Dong J L, Guo D W, Du X L, Cao B Y, Zhang Y, Gu N, Mao X L. J. Nanopart. Res., 2013, 15: 1.
[11] Shi M R, Liu Y Y, Xu M M, Yang H, Wu C H, Miyoshi H. Macromol. Biosci., 2011, 11: 1563.
[12] Rhim W K, Kim J S, Nam J M. Small, 2008, 4: 1651.
[13] Noh S M, Kim W K, Kim S J, Kim J M, Baek K H, Oh Y K. Biochim. Biophys. Acta, 2007, 1770: 747.
[14] Zhou X F, Zhang X Z, Yu X H, Zha X, Fu Q, Liu B, Wang X Y, Chen Y, Chen Y, Shan Y M, Jin Y H, Wu Y G, Liu J Q, Kong W C, Shen J. Biomaterials, 2008, 29: 111.
[15] Hu C, Peng Q, Chen F J, Zhong Z L, Zhuo R X. Bioconjugate Chem., 2010, 21:836.
[16] Ghosh P S, Kim C K, Han G, Forbes N S, Rotello V M. ACS Nano, 2008, 2: 2213.
[17] Li P C, Li D, Zhang L X, Li G P, Wang E K. Biomaterials, 2008, 29: 3617.
[18] Li D, Li P C, Li G P, Wang J, Wang E K. Biomaterials, 2009, 30: 1382.
[19] Du B J, Tian L, Gu X X, Li D, Wang E K, Wang J. Small, DOI: 10.1002/smll.201402470.
[20] Han G, You C, Kim B J, Turingan R S, Forbes N S, Martin C T, Rotello V M. Angew. Chem. Int. Ed., 2006, 45: 3165.
[21] Chen Z Z, Zhang L F, He Y L, Li Y F. ACS Appl. Mater. Inter., 2014, 6: 14196.
[22] Liu Z, Winters Mark, Holodniy Mark, Dai H J. Angew. Chem. Int. Ed., 2007, 46: 2023.
[23] Richard C, Mignet N, Largeau C, Escriou V, Bessodes M, Scherman D. Nano Res., 2009, 2: 638.
[24] Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr C M. Bioconjugate Chem., 2000, 11: 926.
[25] Liu J, Stace-Naughton A, Brinker C J. Chem. Commun., 2009, 14: 5100
[26] Radu D R, Lai C Y, Jeftinija K, Rowe E W, Jeftinija S, Lin Y. J. Am. Chem. Soc., 2004, 126: 13216.
[27] Zhu S G, Lu H B, Xiang J J, Tang K, Zhang B C, Zhou M, Tan C, Li G Y. Chin. Sci. Bull., 2002, 47: 654.
[28] Hartono S B, Gu W Y, Kleitz F, Liu J, He L, Middelberg A P, Yu C, Lu G Q, Qiao S Z. ACS Nano, 2012, 6: 2104.
[29] Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V, ZhaoY. Antioxid. Redox. Signal., 2014, 21: 707.
[30] Jin L, Zeng X, Liu M, Deng Y, He N Y. Theranostics, 2014, 4: 240.
[31] Dai Z, Gjetting T, Mattebjerg M A, Wu C, Andresen T L. Biomaterials, 2011, 32: 8626.
[32] Nimesh S, Goyal A, Pawar V, Jayaraman S, Kumar P, Chandra R, Singh Y, Gupta K C. J. Control. Release, 2006, 110: 457.
[33] Nimesh S, Aggarwal A, Kumar P, Singh Y, Gupta K C, Chandra R. Int. J. Pharm., 2007, 337: 265.
[34] Boussif O, Lezoualch F, Zanta M A, Mergny M D, Scherman D, Demeneix B, Behr J P. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 7297.
[35] Nguyen K C, Muthiah M, Islam M A, Kalash R S, Cho C S, Park H, Lee I K, Kim H J, Park I K, Cho K A. Colloid. Surf. B Bioin., 2014, 119:126.
[36] Chen L, Tian H Y, Chen J, Chen X S, Huang Y B, Jing X B. J. Gene Med., 2010, 12: 64.
[37] Thomas M, Lu J, Zhang C C, Chen J Z, Klibanov A M. Pharm. Res., 2007, 24: 1564.
[38] Bao X L, Wang W, Wang C, Wang Y, Zhou J P, Ding Y, Wang X Y, Jin Y T. Biomaterials, 2014, 35: 8450.
[39] Baginskiy I, Lai T C, Cheng L C, Chan Y C, Yang K Y, Liu R S, Hsiao M, Chen C H, Hu S F, Her L J, Tsai D P, Liu R S. J. Phys. Chem., 2013,117: 2396.
[40] Mumper R J, Wang J J, Claspell J M, Rolland A P. J. Control. Release, 1995, 22: 178.
[41] Danielsen S, Strand S, de Lange D C, Stokke B T. Biochim. Biophys. Acta, 2005, 1721: 44.
[42] Lavertu M, Methot S, Tran-Khanh N, Buschmann M D. Biomaterials, 2006, 27: 4815.
[43] Kiang T, Wen J, Lim H W, Leong K W. Biomaterials, 2004, 25: 5293.
[44] Ishii T, Okahata Y, Sato T. Biochim. Biophys. Acta, 2001, 1514: 51.
[45] Jiang X, Dai H, Leong K W, Goh S H, Mao H Q, Yang Y Y. J. Gene Med., 2006, 8: 477.
[46] Xie Y, Qiao H Z, Su Z G, Chen M L, Ping Q N, Sun M J. Biomaterials, 2014, 35: 7978.
[47] Zhao X, Yin L, Ding J, Tang Cui, Gua S, Yin C, Mao Y. J. Control. Release, 2010, 144: 46.
[48] Felgner P L, Gadek T R, Holm M, Roman R, Chan H W, Wenz M, Northrop J P, Ringold G M, Danielsen M. Proc. Natl. Acad. Sci. U. S. A., 1987, 84: 7413.
[49] Pozzi D, Marchini C, Cardarelli F, Rossetta A, Colapicchioni V, Amici A, Montani M, Motta S, Brocca P, Cantù L, Caracciolo G. Mol. Pharm., 2013, 10: 4654.
[50] Tagalakis A D, He L, Saraiva L, Gustafsson K T, Hart S L. Biomaterials, 2011, 32: 6302.
[51] Writer M J, Kyrtatos P G, Bienemann A S, Pugh J A, Lowe A S, Villegas-Llerena C, Kenny G D, White E A, Gill S S, McLeod C W, Lythgoe M F, Hart S L. J. Control. Release, 2012, 162: 340.
[52] Yan J, Korolev N, Eom K D, Tam J P, Nordenskiold L. Biomacromolecules, 2012, 13: 124.
[53] Ochoa G P, Sesma J Z, Diez M A, Diaz-Tahoces A, Aviles-Trigeros M, Grijalvo S, Eritja R, Fernandez E, Pedraz J L. Pharm. Res., 2014, 31: 1665.
[54] Li P C, Zhang L X, Ai K L, Li D, Liu X H, Wang E K. J. Control. Release, 2008, 129: 128.
[55] Li D, Li G P, Li P C, Zhang L X, Liu Z J, Wang J, Wang E K. Biomaterials, 2010, 31: 1850.
[1] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[2] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
[3] 刘雯, 张立, 杨静, 郝雪芳, 李茜, 冯亚凯. 靶向性载体/基因复合物促进内皮细胞增殖[J]. 化学进展, 2016, 28(6): 954-960.
[4] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.
[5] 刘亚杰, 张鹏, 杜建委, 王幽香. 微纳米粒子的形貌调控及其对药物/基因传递体系的影响[J]. 化学进展, 2016, 28(1): 67-74.
[6] 杜建委, 牟芸, 王幽香. 超声介导微泡基因传递体系的研究[J]. 化学进展, 2014, 26(08): 1427-1433.
[7] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.
[8] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[9] 杨婵丽, 董雄伟, 江南, 章丹, 刘长林*. 细胞研究中的金属配合物-核酸相互作用[J]. 化学进展, 2013, 25(04): 555-562.
[10] 董博, 闫熙博, 牛玉洁, 王欣, 王连永, 王燕铭* . 聚酰胺-胺型树枝状大分子及其衍生物在基因传递中的应用[J]. 化学进展, 2012, 24(12): 2352-2358.
[11] 杨奇志, 刘佳, 蒋序林. 点击化学在生物医用高分子中的应用[J]. 化学进展, 2010, 22(12): 2377-2387.
[12] 张敏莲 胡丁 刘孟儒 孔宪. 离子交换色谱在药用质粒分析中的应用*[J]. 化学进展, 2010, 22(0203): 482-488.
[13] 袁华,李树茂,于涛,任杰. 高聚物基因载体的功能化研究[J]. 化学进展, 2008, 20(11): 1804-1809.
[14] 张悦,于奡,王永健. 聚合物纳米体系在药物和基因载体中的应用*[J]. 化学进展, 2008, 20(05): 740-746.
[15] 孙彦庆,张剑,张高勇,王红霞. DNA与两性表面活性剂相互作用研究*[J]. 化学进展, 2006, 18(11): 1440-1445.
阅读次数
全文


摘要

基于纳米材料的基因载体