English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1378-1394 DOI: 10.7536/PC140312 前一篇   后一篇

• 综述与评论 •

生物法与化学法制备硫酸软骨素

石玉刚*1,2, 党亚丽3, 刘玉华1, 白雪1   

  1. 1. 浙江工商大学食品与生物工程学院 浙江省食品安全重点实验室 杭州 310035;
    2. 多伦多大学化学系 多伦多M5S;
    3. 浙江省医学科学院保健食品研究所 杭州 310013
  • 收稿日期:2014-03-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 石玉刚 E-mail:yugangshi@mail.zjgsu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21106131,31101344)、浙江省分析测试项目(No. 2013C37043)、浙江省教育厅科研项目(No. Y201016439)和浙江工商大学人才引进科研基金(No.09-57)资助

Microbial and Chemical Production of Chondroitin Sulfate

Shi Yugang*1,2, Dang Yali3, Liu Yuhua1, Bai Xue1   

  1. 1. Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China;
    2. Department of Chemistry, University of Toronto, Toronto M5S;
    3. Institute of Health Food, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
  • Received:2014-03-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21106131, 31101344), the Analysis and Measurement Foundation of Zhejiang Province (No. 2013C37043), the Research Foundation of Educational Commission of Zhejiang Province of China (No. Y201016439) and the Scientific Research Fund for the New Talents of Zhejiang Gongshang University (No. 09-57)

硫酸软骨素(ChS)是一种天然的酸性黏多糖,生物活性多样,在医学、生物、制药、食品、化妆品和材料等领域均有广泛应用,特别是在治愈骨关节病上具有颇为理想的效果。本文系统地总结了有关硫酸软骨素及其类似物的生物与化学制备方法的研究进展,如高产微生物菌株筛选与改良,培养条件优化与调控,汇聚式合成策略构建,经济易得的起始物原料等,并指出制备硫酸软骨素中存在的问题以及发展方向。

Chondroitin sulfates (ChS) are a complex polysaccharide having important structural and protective functions and play important roles in many biological processes. It has been widely applied in a variety of fields, such as medicine, biotechnology, pharmacy, food, cosmetics and textiles. This mini-review focuses on the recent advances in microbial and chemical synthesis of such molecules. The productive strains, fermentation conditions, convergent strategies, use of new starting materials, and syntheses of all the ChS variant oligosaccharides are discussed. In addition, suggestions for further studies in syntheses of ChS are proposed based on current research.

Contents
1 Introduction
2 Biotechnological production of ChS and ChS-like products
2.1 Enzymatic synthesis of ChS and ChS-like products
2.2 Microbial production of ChS and ChS-like products
3 Chemical synthesis of ChS and ChS-like products
4 Conclusion and outlook

中图分类号: 

()

[1] Gama C I, Tully S E, Sotogaku N, Clark P M, Rawat M, Vaidehi N, Goddard III W A, Nishi A, Hsieh-Wilson L C. Nature Chem. Biol., 2006, 9: 467.
[2] Garnjanagoonchorn W, Wongekalak L, Engkagul A. Chem. Eng. Proc., 2007, 46: 465.
[3] Lauder R M. Ther. Med., 2009, 17: 56.
[4] Legendre F, Bauge C, Roche R, Saurel A S, Pujol J P. Osteoarthritis Cartilage, 2008, 16: 105.
[5] Ronca F, Palmieri L, Panicucci P, Roncaet G. Osteoarthritis Cartilage, 1998, 6 : 14.
[6] Alberto M F, Romero D G, Lazzari M, Calabrese G C. Thromb. Res., 2008, 122: 109.
[7] Tovar M F, Mattos D A, Stelling M P, Sarcinelli-Luz S L, Nazareth R A, Mourño A S. Biochim. Biophys. Acta., 2005, 1740: 45.
[8] Sakai T, Kyogashima M, Kariya Y, Urano T, Takada Y, Takada A. Thromb. Res., 2000, 100: 557.
[9] Maruyama T, Toida T, Imanari T, Yu G Y, Linhardt R J. Carbohydr. Res., 1998, 306: 35.
[10] Bjornsson T D, Nash P V, Schaten R. Thromb. Res., 1982, 27: 15.
[11] Zheng J, Chen Y, Guan R. Biotechnol., 2008, 136: 586.
[12] Ofman D, Slim G C, Watt D K, Yorke S C. Carbohydr. Polym., 1997, 33: 47.
[13] Hardingham T. Osteoarthritis Cartilage, 1998, 6: 3.
[14] Uebelhart D, Malaise M, Marcolongo R, DeVathaire F, Piperno M, Mailleux E, Fioravanti A, Matoso L, Vignon E. Osteoarthritis Cartilage, 2004, 12: 269.
[15] Basalo I M, Chahine N O, Kaplun M, Chen F H, Hung C T, Ateshian G A. J. Biomech., 2007, 40: 1847.
[16] Mitsuhiko K, Kosei A, Tomohiro M, Matsusue Y, Mori K. Life Sci., 2009, 85: 477.
[17] Liu Y, Yang H, Otaka K, Takatsuki H, Sakanishi A. Colloid Surf. B-Biointerfaces, 2005, 43: 216.
[18] Joao R M, Gadelha E C, Fonseca S M, Sampaio L O, Pontes A L, Dietrich C P, Nader H B. Otolaryngol. Head Neck. Surg., 2000, 122: 115.
[19] Fthenou E, Zafiropoulos A, Tsatsakis A, Stathopoulos A, Karamanos N K, Tzanakakis G N. Int. J. Biochem. Cell Biol., 2006, 38: 2141.
[20] Tirziu D, Jinga V V, Simionescu M. Atherosclerosis, 2007, 147: 155.
[21] Tovar A M F, Mourao P A S. Atherosclerosis, 1996, 126: 185.
[22] Meyer B J, Duvillard L, Owen A, Packard C J, Caslake M J. Atherosclerosis, 2007, 195: e28.
[23] Briani C, Santoro M, Latov N. J. Neuroimmunol., 2000, 108: 216.
[24] Kazuyuki S, Tadahisa M. Curr. Opin. Struct. Biol., 2007, 17: 536.
[25] Galtrey C M, Fawcett J W. Brain Res. Rev., 2007, 54: 1.
[26] Sunwoo H H, Takuo N, Hudson R J, Sim J S. Comp. Biochem. Physiol. B, 1998, 120: 273.
[27] Volpi N. J Chromatogr. B, 1996, 685: 27.
[28] Theocharis A D, Karamanos N K, Papageorgakopoulou N, Tsiganosa C P, Theocharis D A. Biochim. Biophys. Acta, 2002, 1569: 117.
[29] Achur R N, Muthusamy A, Madhunapantula S V, Bhavanandan V P, Seudieu C, Gowda D C. Biochim. Biophys. Acta, 2004, 1701: 109.
[30] 熊双丽(Xiong S L), 金征宇(Jin Z Y). 中成药(Chinese Traditional Patent Medicine), 2006, 28 (9) : 1343.
[31] 熊双丽(Xiong S L), 李安林(Li A L), 吴照明(Wu Z M), 魏明(Wei M). 农业工程学报(Transactions of the Chinese Society of Agricultural Engineering), 2009, 25 (1) : 271.
[32] 陈红丽(Chen L H), 吕全建(Lv Q J), 姬小明(Ji X M). 安徽农业科学(Journal of Auhui Agricultural Sciences), 2008, 36 (15) : 6165.
[33] Karst N A, Linhardt R J. Curr. Med. Chem., 2003, 10: 1993.
[34] Schiraldi C, Cimini D, Rosa M. Microbiol. Biotechnol., 2010, 87: 1209.
[35] Huckerby T N, Lauder R M, Brown G M, Nieduszynski I A, Anderson K, Boocock J, Sandall P L, Stephen D. Eur. J. Biochem., 2001, 268: 1181.
[36] Vitor H. Pomin. Mar. Drugs, 2014, 12: 232.
[37] Shetty A K, Takanari K, Shuji M, Narumi M, Kudo Y, Yamada S, Sugahara K. Carbohydr. Res., 2009, 344: 1526.
[38] GuerriniM, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing J C, Guglieri S, Fraser B, Al-Hakim A, Gunay N S, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt R J, Casu B, Torri G, Sasisekharan R. Nature Biotechnol., 2008, 26: 669.
[39] Schiraldi C, Cimini D, de Rosa M. Microbiol. Biotechnol., 2010, 87: 1209.
[40] Jang H, Yoon Y K, Kim J A, Kim H S, An S J, Seo J H, Cui C, Carbis R J. Biotechnol., 2008, 135: 71.
[41] Cimini D, de Rosa M, Schiraldi C. Biotechnol. J., 2012, 7: 237.
[42] Kobayashi S, Fujikawa S-i, Ohmae M. J. Am. Chem. Soc., 2003, 125: 14357.
[43] Fujikawa S-i, Ohmae M, Kobayashi S. Biomacromolecules, 2005, 6: 2935.
[44] Kobayashi S, Ohmae M, Ochiai H, Fujikawa S-i. Chem. Eur. J., 2006, 12: 5962.
[45] Sugiura N, Shimokata S, Minamisawa T, Hirabayashi J. Kimata K, Watanabe H. Glycoconj. J., 2008, 25: 521.
[46] Jolly J F, Klimaszewski K, Nakanishi Y, Matsubara H, Takahashi T, Nishio K. US 20100063001A1, 2009.
[47] Rrodriguez M L, Jann B, Jann K. Eur. J. Biochem., 1988, 177: 117.
[48] Manzoni M, Bergomi S, Molinari F, Cavazzoni V. Biotechnol. Lett., 1996, 18: 383.
[49] Petrucci F, Zoppetti G, Oreste P, Cipolletti G. WO0102597 (A1), 2001.
[50] Zoppetti G, Oreste P. US 6777398B2, 2002.
[51] Cimini D, Restaino O F, Catapano A, de Rosa M, Schiraldi C. Appl. Microbiol. Biotechnol., 2010, 85: 1779.
[52] Restaino O F, Cimini D, de Rosa M, Catapano A, de Rosa M, Schiraldi C. Microb. Cell Fact, 2011, 10: 10.
[53] Schiraldi C, Alfano A, Cimini D, de Rosa M, Panariello A, Restaino O F, de Rosa M. Biotechnol. Prog., 2012, 28: 1012.
[54] Schiraldi C, Carcarino L I, Alfano A, Restaino O F, Panariello A, de Rosa M. Biotechnol. J., 2011, 6: 410.
[55] Suzuki K, Miyamoto K, Kaseyama H. US 20100151532A1, 2008.
[56] Zanfardino A, Restaino O F, Notomista E, Cimini D, Schiraldi C, De Rosa M, De Felice M, Varcamonti M. Microb. Cell Fact, 2010, 9: 34.
[57] Spicer A P, Kaback L A, Smith T J, Seldin M F. J. Biol. Chem., 1998, 273: 25117.
[58] Wegrowski Y, Perreau C, Bontemps Y, Maquart F X. Biochem. Biophys. Res., 1998, 250: 206.
[59] Roman E, Roberts I, Lidholt K, Kusche-Gullberg M. Biochem. J., 2003, 374: 767.
[60] DeRosa M, Schiraldi C, Cimini D. WO 2010136435A1, 2009.
[61] Bedini E, DeCastro C, DeRosa M, Di Nola A, Iadonisi A, Restaino O F, Schiraldi C, Parrilli M. Angew. Chem. Int. Ed. Engl., 2011, 50: 6160.
[62] De Angelis P L. US 20030104601, 2003.
[63] De Angelis P L. US 7569386, 2009.
[64] 刘立明(Liu L M), 吴秋林(Wu Q L), 刘佳(Liu J), 陈坚(Chen J). CN 201110127831.1, 2011.
[65] DeAngelis P L, Gunay N S, Toida T, Linhardt R J. Carbohydr. Res., 2002, 337: 1547.
[66] DeAngelis P L. US 7569386B2, 2005.
[67] DeAngelis P L. US 7642071B2, 2007.
[68] Sugiugura N, Koji J. US 20090155851, 2006.
[69] Narimatsu H, Kimata K, Yada T, Sato T, Goto M US 7232676B2, 2007.
[70] Liu L M, Liu J, Wu Q L. CN 201110317393.5, 2011.
[71] Tully S E, Mabon R, Gama C I, Tsai S M, Liu X, Hsieh-Wilson L C. J. Am. Chem. Soc., 2004, 126: 7736.
[72] Tully S E, Rawat M, Hsieh-Wilson L C. J. Am. Chem. Soc., 2006, 128: 7740.
[73] Tamura J, Tokuyoshi M. Biosci. Biotechnol. Biochem., 2004, 68: 2436.
[74] Gama C I, Tully S E, Sotogaku N, Clark P M, Rawat M, Vaidehi N, Goddard W A, Nishi A, Hsieh-Wilson L C. Nature Chem. Biol., 2006, 2: 467.
[75] Tamura J, Neumann K.W, Kurono S, Ogawa T. Carbohydr. Res., 1998, 305: 43.
[76] Tamura J, Nakada Y, Taniguchi K, Yamane M. Carbohydr. Res., 2008, 343: 39.
[77] Lopin C, Jacquinet J C. Angew. Chem. Int. Ed., 2006, 45: 2574.
[78] Vibert A, Lopin-Bon C, Jacquinet J C. Chem. Eur. J., 2009, 15: 9561.
[79] Jacquinet J C, Lopin-Bon C, Vibert A. Chem. Eur. J., 2009, 15: 9579.
[80] Vibert A, Lopin-Bon C, Jacquinet J C. Eur. J. Org. Chem., 2011, 22: 4183.
[81] Despras G, Bernard C, Perrot A, Cattiaux L, Prochiantz A, Lortat-Jacob H, Mallet J M. Chemistry Eur. J., 2013, 19: 531.

[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[3] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[4] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[5] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[6] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[7] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[8] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[9] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[10] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[11] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[12] 龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏. 腈水解酶在医药中间体生物催化研究中的最新进展[J]. 化学进展, 2015, 27(4): 448-458.
[13] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
[14] 梁妍钰, 唐姗, 郑基深. 细胞穿透环肽[J]. 化学进展, 2014, 26(11): 1793-1800.
[15] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
阅读次数
全文


摘要

生物法与化学法制备硫酸软骨素