English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 375-384 DOI: 10.7536/PC130632 前一篇   后一篇

• 综述与评论 •

基于环糊精构建的基因载体进展

徐妮为1,2, 刘梦艳1, 洪诗斌1, 颜蔚1, 付继芳1, 邓维*1   

  1. 1. 上海大学材料学院纳米科学与技术研究中心 上海 200444;
    2. 湖南中医药高等专科学校 株洲 412012
  • 收稿日期:2013-06-01 修回日期:2013-08-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 邓维,e-mail:wdeng@shu.edu.cn E-mail:wdeng@shu.edu.cn
  • 基金资助:

    上海市东方学者资助、国家自然科学基金项目(No.21102088,21174081)、浦江学者(12PJ1403400)和湖南省教育厅科研课题(10C0268)资助

Recent Progress in Gene Delivery Based on Cyclodextrin

Xu Niwei1,2, Liu Mengyan1, Hong Shibin1, Yan Wei1, Fu Jifang1, Deng Wei*1   

  1. 1. Nano-Science & Technology Research Center, Shanghai University, Shanghai 200444, China;
    2. Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
  • Received:2013-06-01 Revised:2013-08-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the Easter Scholar, the National Natural Science Foundation of China (No.21102088, 21174081), Pujiang Scholar(12PJ1403400) and Research Project of Education Department of Hunan (10C0268)

安全有效的基因载体对于基因治疗有着重要的潜在价值。相对于病毒性基因载体,化学合成的载体具有低免疫原性,易于大规模生产和生产成本较低的特性,因而受到越来越多的关注,但是非病毒基因载体在转染效率和选择性方面有一定的限制性,当前的主要研究工作集中在这两方面。基于环糊精构建的基因载体,可以有效地提供基因载体的立体构象和功能性的选择性。作为FDA批准的生物材料,环糊精具有无毒和生物降解性,其不但可以保护基因,避免在体内降解,同时有助于通过细胞膜,进入细胞内达到基因转染的作用。环糊精具有大量可修饰的羟基基团,因此对环糊精修饰不但可以通过主客体作用构建超分子体系,并且可以作为多官能团核形成星状高分子,被广泛应用于制备低毒、可降解、靶向性和高效率的转基因载体。目前,环糊精修饰的非病毒正离子载体转移siRNA,已经成功进行了色素瘤的临床试验,取得了很好的治疗效果,表明了环糊精非病毒载体的巨大应用前景。本文对基于环糊精基因载体的最新研究进展进行了综述,详细介绍了基于环糊精的超分子自组装构建的聚轮烷型、侧链分子识别型的基因载体,以及基于环糊精多羟基构型而构建的星型聚合物基因载体和树枝状基因载体,并对环糊精基因载体的优越性和未来应用做了相应的介绍。

Safe and efficient delivery of nucleic acid constructs to target cells has great potential for the treatment of genetic diseases. Non-viral gene delivery has attracted considerable attention because of large-scale production, immunogenicity and safety concerns. Whereas, non-viral gene delivery still suffered from low transfection efficiency and lack of selectivity, which is the main target on this field. The gene delivery based on cyclodextrin (CD) can offer the possibility for construction of various multi-functional gene deliveries. As a FDA approved bio-material, CDs have been extensively used for gene delivery because of their ability to stabilize the nucleic acids in biological media and their ability to destabilize and permeate biological membranes and for obviating undesirable side effects. CD is not only a widely used host molecule capable of internalizing guest molecules in water, but also a core with abundant OH groups. Therefore, a variety of nonviral vectors have been explored based on CD's host-guest interaction and core structure. Recently, CD modified gene delivery has achieved to the clinic test with remarkable result, showing great potential application. In this review the newest development of the gene delivery based on cyclodextrin is summarized. The article provides detail information about the rotaxanes type, side-chain type, star-shape type and branched type deliveries of nucleic acid. Furthermore, the advantage of CD based gene delivery is emphasized herein, which has been applied in clinical test.

Contents
1 Introduction
2 Gene delivery based on cyclodextrin
2.1 Rotaxane type gene deliveries
2.2 Side-chain type gene deliveries
2.3 Star-shape type gene deliveries
2.4 Branched type gene deliveries
2.5 Other type gene deliveries
3 Conclusion and outlook

中图分类号: 

()

[1] (a) Xu P, Kirk E A, Zhan Y, Murdoch W J, Radosz M, Shen Y. Angew. Chem. Int. Ed., 2007, 46: 4999; (b) Meager A. Gene "Therapy Technologies: Applications and Regulations", John Wiley & Sons Ltd. U. K. 1999.
[2] Mintzer M A, Simanek E E. Chem. Rev., 2009, 109: 259.
[3] Boussif O, Lezoualc H F, Zanta M A, Mergny M D, Scherman D, Demeneix B, Behr J P. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 7297.
[4] (a) Rekharsky M V, Inoue Y. Chem. Rev., 1998, 1875; (b) Liu L, Guo Q X. J. Inclu. Phenom. Macro. Chem., 2004, 50: 95; (c) Liu L, Guo Q X. J. Inclu. Phenom. Macro. Chem., 2002, 42: 1; (d) Liu L, Guo Q X. J. Phys. Chem. B, 1999, 103: 3461; (e) Mellet C O, Fernandez J M G, Benito J M. Chem. Soc. Rev., 2011, 40: 1586.
[5] Neu M, Fischer D, Kissel T. J. Gene. Med., 2005, 7: 992.
[6] (a) 董海青(Dong H Q), 李永勇(Li Y Y), 李兰(Li L), 时东陆(Shi D L). 化学进展(Prog. Chem.), 2011, 23: 914; (b) 周冬香(Zhou D X), 孙涛(Sun T), 邓维(Deng W). 有机化学(Chin. J. Org. Chem.), 2012, 32: 239.
[7] (a) Lee S C, Choi H S, Ooya T, Yui N. Macromolecules, 2004, 37: 7464.; (b) Choi H S, Yamamoto K, Ooya T, Yui N. Chem. Phys. Chem., 2005, 6: 1081.; (c) Choi H S, Hirasawa A, Ooya T, Kajihara D, Hohsaka T, Yui N. Chem. Phys. Chem., 2006, 7: 1671; (d) Joung Y K, Choi H S, Ooya T, Yui N. J. Inclusion Phenom. Macrocyclic Chem., 2007, 57: 323.
[8] Shuai X T, Merdan T, Unger F, Kissel T. Bioconjug. Chem., 2005, 16: 322.
[9] (a) Li J, Yang C, Li H, Wang X, Goh S, Ding J, Wang D, Leong K. Adv. Mater., 2006, 18: 2969; (b) Yang C, Wang X, Li H, Goh S H, Li J. Biomacromolecules, 2007, 8: 3365; (c) Li J, Loh X J. Adv. Drug Deliv. Rev., 2012, 60: 1000; (d) Li Z, Yin H, Zhang Z, Liu K L, Li J. Biomacromol., 2012, 13: 3162; (e) Yang C, Wang X, Li H, Tan E, Lim C T, Li J. J. Phys. Chem. B, 2009, 113: 7903.
[10] (a) 李春鸽(Li C G), 赵爽(Zhao S), 李俊杰(Li J J), 尹玉姬(Yin Y J). 化学进展(Prog. Chem.), 2013, 25: 122; (b) 尤树森(You S S), 杨万泰(Yang W T), 尹梅贞(Yin M Z). 化学进展(Prog. Chem.), 2012, 24: 2198; (c) 沈银(Shen Y), 胡桂香(Hu G X), 张华星(Zhang H X), 齐莉莉(Qi L L), 骆成才(Luo C C). 化学学报(Acta Chimica Sinica), 2013, 71: 323.
[11] Yamashita A, Kanda D, Katoono R, Yui N, Ooya T, Maruyama A, Akita H, Kogure K, Harashima H. J. Control. Release, 2008, 131: 137.
[12] Ralfkirche I S, Lionel W, Wanger E. Adv. Drug. Deliver. Rev., 2001, 53: 341.
[13] Zhou Y, Wang H, Wang C, Li Y, Lu W, Chen S, Luo J, Jiang Y, Chen J. Mol. Pharmaceutics, 2012, 9: 1067.
[14] Kulkarni A, DeFrees K, Schuldt R A, Vlahu A, VerHeul R, Hyun S, Deng W, Thompson D H. Integr. Biol., 2013, 5: 115.
[15] Liu Y, Yu L, Chen Y, Zhao Y L, Yang H. J. Am. Chem. Soc., 2007, 129: 10656.
[16] Burckbuchler V, Wintgens V, Leborgne C, Lecomte S, Leygue N, Scherman D, Kichler A, Amiel C. Bioconjugate Chem., 2008, 19: 2311.
[17] Zhang J, Sun H, Ma P X. ACS Nano, 2010, 4: 1049.
[18] Liu Y, Yu Z, Zhang Y, Guo D, Liu Y. J. Am. Chem. Soc., 2008, 130: 10431.
[19] Buckwalter D J, Sizovs A, Ingle N P, Reineke T M. ACS Macro Lett., 2012, 1: 609.
[20] Deng W, Chen J, Kulkarnia A, Thompson D H. Soft Matter, 2012, 8: 5843.
[21] Kulkarni A, Deng W, Hyun S, Thompson D H. Bioconjugate Chem., 2012, 23: 933.
[22] (a)Aloorkar N H, Kulkarni A S, Patil R A, Ingale D J. Int. J. Pharm. Sci. Nanotechnol., 2012, 5: 1675; (b) 付云(Fu Y), 王海蛟(Wang H J), 张骥(Zhang J), 余孝其(Yu X Q). 化学学报(Acta Chimica Sinica), 2013, 71(04): 585.
[23] Huang H, Tang G, Wang Q, Li D, Shen F, Zhou J, Yu H. Chem. Commun., 2006, 2382.
[24] (a) Srinivasachari S, Fichter K M, Reineke T M. J. Am. Chem. Soc., 2008, 130: 4618; (b) Sizovs A, McLendon P M, Srinivasachari S, Reineke T M. Top. Cur. Chem., 2010, 131; (c) Srinivasachari S, Reineke T M. Biomaterials, 2009, 30: 928.
[25] (a) Bennevault-Celton V, Urbach A, Martin O, Pichon C, Guégan P, Midoux P. Bioconjugate Chem., 2011, 22: 2404; (b) Bertrand E, Goncalves C, Billiet L, Gomez J P, Pichon C, Cheradame H, Midoux P, Guegan P. Chem. Commun., 2011, 47: 12547.
[26] (a) Zhao F, Yin H, Zhang Z, Li J. Biomacromolecules, 2013, 14: 476; (b) Wang X, Li J, Wang Y, Koenig L, Gjyrezi A, Giannakakou P, Shin E H, Tighiouart M, Chen Z, Nie S. ACS Nano, 2011, 5: 6184; (c) Wang X, Li J, Wang Y, Cho K J, Kim G, Gjyrezi A, Koenig L, Giannakakou P, Shin H J C, Tighiouart M, Nie S, Chen Z, Shin D M. ACS Nano, 2009, 3: 3165; (d)Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50: 7645.
[27] (a) Xu F J, Zhang Z X, Ping Y, Li J, Kang E T, Neoh K G. Biomacromolecules, 2009, 10: 285; (b) Liu M, Li Z H, Xu F J, Lai L H, Wang Q Q, Tang G P, Yang W T. Biomaterials, 2012, 33: 2240.
[28] (a) Hu Y, Zhu Y, Yang W T, Xu F J. ACS Appl. Mater. Interfaces, 2013, 5: 703; (b) Xiu K M, Yang J J, Zhao N N, Li J S, Xu F J. Acta Biomater., 2013, 9: 4726; (c) Hu Y, Zhu Y, Yang W T, Xu F J. ACS Appl. Mater. Interf., 2013, 5: 703.
[29] (a) Meéndez-Ardoy A, Guilloteau N, Giorgio C D, Vierling P, Santoyo-Gonzlez F, Mellet C O, Fernndez J M G. J. Org. Chem., 2011, 76: 5882; (b) Bienvenu C, Martinez A, Jimenez Blanco J L, Di Giorgio C, Vierling P, Ortiz Mellet C, Defaye J, Garcia Fernandez J M. Organ. Biomol. Chem., 2012, 10: 5570; (c) Diaz-Moscoso A, Guilloteau N, Bienvenu C, Mendez-Ardoy A, Jimenez Blanco J L, Benito J M, Le Gourrierec L, Di Giorgio C, Vierling P, Defaye J. Biomaterials, 2011, 32: 7263; (d) Diaz-Moscoso A, Le Gourrierec L, Gomez-Garcia M, Benito J M, Balbuena P, Ortega-Caballero F, Guilloteau N, Di Giorgio C, Vierling P, Defaye J. Chem. Euro. J., 2009, 15: 12871.
[30] (a) Villari V, Mazzaglia A, Darcy R, O'Driscoll C M, Micali N. Biomacromolecules, 2013, 14: 811; (b) O'Mahony A M, Godinho B M D C, Ogier J, Devocelle M, Darcy R, Cryan J F, O'Driscoll C M. ACS Chem. Neurosci., 2012, 3: 744.
[31] (a) 何谷 (He G), 郭丽(Guo L). 有机化学(Chin. J. Org. Chem.), 2008, 8: 1326; (b) 董博(Dong B), 闫熙博(Yan X B), 牛玉洁(Niu Y J), 王欣(Wang X), 王连永(Wang L Y), 王燕铭(Wang Y M). 化学进展(Prog. Chem.), 2012, 24: 2352.
[32] (a) Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K, Bioconjugate Chem., 2002, 13: 1211; (b) Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. Bioconjugate Chem., 2003, 14: 342; (c) Arima H, Arizono M, Higashi T, Yoshimatsu A, Ikeda H, Motoyama K, Hattori K, Takeuchi T, Hirayama F, Uekama K. Cancer Gene Therapy, 2012, 19: 358; (d) Ikeda Y, Motoune S, Ono M, Arima H, Hirayama F, Uekama K. J. Drug Deliv. Sci. Tech., 2004, 14: 69.
[33] (a) Chen Y, Zhou L Z, Pang Y, Huang W, Qiu F, Jiang X L, Zhu X Y, Yan D Y, Chen Q. Bioconjugate Chem., 2011, 22: 1162; (b) Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D. J. Am. Chem. Soc., 2013, 135: 4765; (c) Dong R, Chen H, Wang D, Zhuang Y, Zhu L, Su Y, Yan D, Zhu X. ACS Macro Letters, 2012, 1: 1208; (d) Dong R, Liu Y, Zhou Y, Yan D, Zhu X. Polymer Chem., 2011, 2: 2771; (e) Dong R, Zhou L, Wu J, Tu C, Su Y, Zhu B, Gu H, Yan D, Zhu X. Chem. Commun., 2011, 47: 5473.
[34] (a) Park I K, von Recum H A, Jiang S, Pun S H. Langmuir, 2006, 22: 8478; (b) Pun S H, Bellocq N C, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis M E. Bioconjugate Chem., 2004, 15: 831; (c) Bellocq N C, Kang D W, Wang X, Jensen G S, Pun S H, Schluep T, Zepeda M, Davis M E. Bioconjugate Chem., 2004, 15: 1201.
[35] (a) Davis M E, Zuckerman J, Choi C H, Seligson D, Tolcher A, Alabi C, Yen Y, Heidel J, Ribas A. Nature, 2010, 464: 1067; (b) Hwang S J, Bellocq N C, Davis M E. Bioconjugate Chem., 2001, 12: 280; (c) Pun S H, Davis M E. Bioconjugate Chem., 2002, 13: 630; (d) Pun S H, Bellocq N C, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis M E. Bioconjugate Chem., 2004, 15: 831; (e)Kulkarni R P, Mishra S, Fraser S E, Davis M E. Bioconjugate Chem., 2005, 16: 986.

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[10] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[11] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[12] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[13] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[14] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.
[15] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
阅读次数
全文


摘要

基于环糊精构建的基因载体进展