English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2093-2102 DOI: 10.7536/PC130427 前一篇   后一篇

• 综述与评论 •

磷酸乙二酯类聚合物的合成及其生物应用

孙盟盟, 何勇, 杨万泰, 尹梅贞*   

  1. 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室 碳纤维及功能高分子教育部重点实验室 北京 100029
  • 收稿日期:2013-04-01 修回日期:2013-06-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 尹梅贞 E-mail:yinmz@mail.buct.edu.cn

Synthesis and Bio-Application of Poly(Ethylene Phosphate)

Sun Mengmeng, He Yong, Yang Wantai, Yin Meizhen*   

  1. State Key Laboratory of Chemical Resource Engineering, Key laboratory of Carbon Fibers and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2013-04-01 Revised:2013-06-01 Online:2013-12-15 Published:2013-09-17

磷酸酯类聚合物具有生物可降解及生物相容性的优点。分子中的磷以五价状态存在,其化学结构具有多样性和可设计性,容易进行化学修饰和功能化,因此该类聚合物的物理化学性质容易调节。由于磷酸酯类聚合物在药物控制释放、基因载体及组织工程等众多领域具有广阔的应用前景,因此近年来引起越来越多科研工作者的关注。其中,应用最广泛的是磷酸乙二酯类聚合物。本文围绕磷酸乙二酯类聚合物的结构特征,简单介绍了一系列磷酸乙二酯单体及其聚合物的合成方法。此外,根据近年来国内外的研究新成果,以几种具有代表性拓扑结构的磷酸乙二酯类聚合物为例,阐述了它们在药物装载、基因工程和组织工程等生物医学领域的应用。最后本文结合磷酸乙二酯类聚合物的优异性能,展望了其在生命科学领域的发展前景。

Polyphosphoesters are a class of biodegradable polymers with repeated phosphoester linkage in the backbone. Due to their biocompatibility and structural similarities to naturally occurring nucleic and teichoic acids, functionalized polyphosphoesters have attracted more and more attention in the last decade and have currently been studied extensively. The phosphorus is a pentavalent atom and can be modified by the incorporation of various substituents, which leads to formation of versatile structures and the easy side-chain functionalization, thus, it allows effective modification of their physical and chemical properties. Therefore polyphosphoesters have been applied in drug/gene delivery, tissue engineering and so on. Among them, the most popular and widely used of such polymers is poly(ethylene phosphate). This review briefly summarizes the structural characteristics of poly(ethylene phosphate) and the controlled synthetic methods, which provide access to novel and complex polymer structures. The article focuses on the various types of synthetic poly(ethylene phosphate) such as linear, star and hyperbranched derivatives, particularly those poly(ethylene phosphate) derivatives that applied in biological fields are highlighted. In addition, on the basis of current research in the fields, this paper presents several representative topologies of poly(ethylene phosphate) and their application in drug/gene deliveries and tissue engineering. At last we propose the prospects of poly(ethylene phosphate) development in life sciences, and we look forward to better communication with other scientists in this field.

Contents
1 Introduction
2 Synthesis of poly(ethylene phosphate)
2.1 Synthesis of poly(ethylene phosphate) monomers
2.2 Ring-open polymerization of poly(ethylene phosphate) monomers
3 Structures of poly(ethylene phosphate)
3.1 Linear poly(ethylene phosphate)
3.2 Star-shape poly(ethylene phosphate)
3.3 Hyperbranched poly(ethylene phosphate)
3.4 Other structures
4 Applications of poly(ethylene phosphate) in biology
4.1 Drug delivery and release
4.2 Gene delivery
4.3 Tissue engineering
5 Conclusions and outlook

中图分类号: 

()

[1] Renier M, Kohn D. J. Biomed. Mater. Res., 1997, 34: 95—104
[2] Baran J, Penczek S. Macromolecules, 1995, 28: 5167—5176
[3] Wang Y, Tang L, Sun T, Li C, Xiong M, Wang J. Biomacromolecules, 2008, 9: 388—395
[4] Kaluzynski K, Libisowski J, Penczek S. Macromolecules, 1976, 9: 365—367
[5] Libiszowski J, Ka?zynski K, Penczek S. J. Polym. Sci.: Polym. Chem. Ed., 1978, 16: 1275—1283
[6] Tang L, Wang Y, Li Y, Du J, Wang J. Bioconj. Chem., 2009, 20: 1095—1099
[7] Liu J, Huang W, Pang Y, Zhu X, Zhou Y, Yan D. Biomacromolecules, 2010, 11: 1564—1570
[8] Liu J, Pang Y, Huang W, Zhu X, Zhou Y, Yan D. Biomaterials, 2010, 31: 1334—1341
[9] Liu J, Pang Y, Huang W, Zhu Z, Zhu X, Zhou Y, Yan D. Biomacromolecules, 2011, 12: 2407—2415
[10] Xiong M, Bao Y, Yang X, Wang Y, Sun B, Wang J. J. Am. Chem. Soc., 2012, 134: 4355—4362
[11] Zhai X, Huang W, Liu J, Pang Y, Zhu X, Zhou Y, Yan D. Macromol. Biosci., 2011, 11: 1603—1610
[12] Wang J, Mao H, Leong K. J. Am. Chem. Soc., 2001, 123: 9480—9481
[13] Lu Z, Wu J, Sun T, Ji J, Yan L, Wang J. Biomaterials, 2008, 29: 733—741
[14] Sun T, Du J, Yan L, Mao H, Wang J. Biomaterials, 2008, 29: 4348—4355
[15] Li Q, Wang J, Shahani S, Sun D, Sharma B, Elisseeff J H, Leong K W. Biomaterials, 2006, 27: 1027—1034
[16] Yang X, Sun T, Dou S, Wu J, Wang Y, Wang J. Biomacromolecules, 2009, 10: 2213—2220
[17] 程静(Cheng J). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2009
[18] Wu J, Liu X, Wang Y, Wang J. J. Mater. Chem., 2009, 19: 7856—7863
[19] Wang F, Wang Y, Yan L, Wang J. Polymer, 2009, 50: 5048—5054
[20] Liu J, Huang W, Zhou Y, Yan D. Macromolecules, 2009, 42: 4394—4399
[21] Liu J, Huang W, Pang Y, Huang P, Zhu X, Zhou Y, Yan D. Angew. Chem. Int. Ed., 2011, 50: 9162—9166
[22] Wang Y, Yuan Y, Wang F, Wang J. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 487—494
[23] Zhang S, Li A, Zou J, Lin L Y, Wooley K L. ACS Macro Letters, 2012, 1: 328—333
[24] Zhu W, Sun S, Xu N, Gou P, Shen Z. J. Appl. Polym. Sci., 2012, 123: 365—374
[25] Tian H, Tang Z, Zhuang X, Chen X, Jing X. Prog. Polym. Sci., 2012, 37: 237—280
[26] Shao H, Zhang M, He J, Ni P. Polymer, 2012, 53: 2854—2863
[27] Yuan Y, Mao C, Du X, Du J, Wang F, Wang J. Adv. Mater., 2012, 24: 5476—5480
[28] Song W, Du J, Liu N, Dou S, Cheng J, Wang J. Macromolecules, 2008, 41: 6935—6941
[29] Wang Y, Li Y, Sun T, Xiong M, Wu J, Yang Y, Wang J. Macromol. Rapid Commun., 2010, 31: 1201—1206
[30] Iwasaki Y, Akiyoshi K. Biomacromolecules, 2006, 7: 1433—1438
[31] Wang Y, Yuan Y, Du J, Yang X, Wang J. Macromol. Biosci., 2009, 9: 1154—1164
[32] Liu X, Ni P, He J, Zhang M. Macromolecules, 2010, 43: 4771—4781
[33] Richards M, Dahiyat B, Arm D, Lin S, Leong K. J. Polym. Sci., Part A: Polym. Chem., 1991, 29: 1157—1165
[34] Branham K, Mays J, Gray G, Bharara P, Byrd H, Bittinger R, Farmer B. Polymer, 2000, 41: 3371—3379
[35] Pretula J, Kaluzynski K, Wisniewski B, Szymanski R, Loontjens T, Penczek S. J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 830—843
[36] Pretula J, Kaluzynski K, Szymanski R, Penczek S. J. Polym. Sci., Part A: Polym. Chem., 1999, 37: 1365—1381
[37] Dustan Myrex R, Farmer B, Gray G M, Wright Y-J, Dees J, Bharara P C, Byrd H, Branham K E. Eur. Polym. J., 2003, 39: 1105—1115
[38] Wen J, Zhuo R X. Macromol. Rapid Commun., 1998, 19: 641—642
[39] Jia L, Yan L, Li Y. J. Biomater. Sci. Polym. Ed., 2011, 22: 1197—1213
[40] Wu Q, Wang C, Zhang D, Song X, Verpoort F, Zhang G. React. Funct. Polym., 2011, 71: 980—984
[41] Xiao C, Wang Y, Du J, Chen X, Wang J. Macromolecules, 2006, 39: 6825—6831
[42] Xiong M, Juan W, Wang Y, Li L, Liu X, Zhang G, Yan L, Wang J. Macromolecules, 2009, 42: 893—896
[43] Chen D, Wang J. Macromolecules, 2006, 39: 473—475
[44] Wen J, Zhuo R X. Polym. Int., 1998, 47: 503—509
[45] Wen J, Kim G J, Leong K W. J. Control. Release, 2003, 92: 39—48
[46] Wang Y, Shen S, Wu Q, Chen D, Wang J, Steinhoff G, Ma N. Macromolecules, 2006, 39: 8992—8998
[47] Iwasaki Y, Akiyoshi K. Macromolecules, 2004, 37: 7637—7642
[48] Iwasaki Y, Nakagawa C, Ohtomi M, Ishihara K, Akiyoshi K. Biomacromolecules, 2004, 5: 1110—1115
[49] Nyce G W, Glauser T, Connor E F, Möck A, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2003, 125: 3046—3056
[50] Csihony S, Culkin D A, Sentman A C, Dove A P, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2005, 127: 9079—9084
[51] Dove A P, Pratt R C, Lohmeijer B G, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2005, 127: 13798—13799
[52] Iwasaki Y, Yamaguchi E. Macromolecules, 2010, 43: 2664—2666
[53] CléMent B T, Grignard B, Koole L, JéRoMe C, Lecomte P. Macromolecules, 2012, 45: 4476—4486
[54] Kowalski A, Duda A, Penczek S. Macromolecules, 2000, 33: 689—695
[55] Kowalski A, Duda A, Penczek S. Macromolecules, 2000, 33: 7359—7370
[56] Zhang S, Zou J, Zhang F, Elsabahy M, Felder S E, Zhu J, Pochan D J, Wooley K L. J. Am. Chem. Soc., 2012, 134: 18467—18474
[57] Zhu W, Sun S, Xu N, Shen Z. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 4987—4992
[58] Wang Y, Liu X, Sun T, Xiong M, Wang J. J. Controlled Release, 2008, 128: 32—40
[59] Yuan Y, Liu X, Wang Y, Wang J. Langmuir, 2009, 25: 10298—10304
[60] Yuan Y, Wang Y, Du J, Wang J. Macromolecules, 2008, 41: 8620—8625
[61] Liu J, Huang W, Pang Y, Zhu X, Zhou Y, Yan D. Langmuir, 2010, 26: 10585—10592
[62] Liu J, Pang Y, Huang W, Huang X, Meng L, Zhu X, Zhou Y, Yan D. Biomacromolecules, 2011, 12: 1567—1577
[63] Cheng J, Ding J, Wang Y, Wang J. Polymer, 2008, 49: 4784—4790
[64] Wu Q, Wang C, Zhang D, Song X, Liu D, Wang L, Zhang G. React. Funct. Polym., 2012, 72: 372—377
[65] 魏焕郁(Wei H Y), 施文芳(Shi W F). 高等学校化学学报(Chemical Journal of Chinese Universities), 2001, 22: 338—344
[66] Liu J, Pang Y, Huang W, Zhai X, Zhu X, Zhou Y, Yan D. Macromolecules, 2010, 43: 8416—8423
[67] Du J, Chen D, Wang Y, Xiao C, Lu Y, Wang J, Zhang G. Biomacromolecules, 2006, 7: 1898—1903
[68] Liu J, Huang W, Pang Y, Zhu X, Zhou Y, Yan D. Biomaterials, 2010, 31: 5643—5651
[69] Wang Y, Wu J, Li Y, Du J, Yuan Y, Wang J. Chem. Commun., 2010, 46: 3520—3522
[70] Xiong M, Li Y, Bao Y, Yang X, Hu B, Wang J. Adv. Mater., 2012, 24: 6175—6180
[71] Du J, Du X, Mao C, Wang J. J. Am. Chem. Soc., 2011, 133: 17560—17563
[72] Wang Y, Li Y, Yang X, Yuan Y, Yan L, Wang J. Macromolecules, 2009, 42: 3026—3032
[73] Yuan Y, Wang J. Colloids Surf., B, 2011, 85: 81—85
[74] Iwasaki Y, Wachiralarpphaithoon C, Akiyoshi K. Macro-molecules, 2007, 40: 8136—8138
[75] Wang Y, Tang L, Li Y, Wang J. Biomacromolecules, 2009, 10: 66—73
[76] Iwasaki Y, Komatsu S, Narita T, Akiyoshi K, Ishihara K. Macromol. Biosci., 2003, 3: 238—242
[77] Wachiralarpphaithoon C, Iwasaki Y, Akiyoshi K. Biomaterials, 2007, 28: 984—993
[78] He J, Ni P, Wang S, Shao H, Zhang M, Zhu X. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 1919—1930
[79] Sun T, Du J, Yao Y, Mao C, Dou S, Huang S, Zhang P, Leong K W, Song E, Wang J. ACS Nano, 2011, 5: 1483—1494
[80] Liu X, Xiong M, Shu X, Tang R, Wang J. Mol. Pharm., 2012, 9: 2863—2874
[81] Wang H, Xiong M, Wang Y, Zhu J, Wang J. J. Controlled Release, 2013, 166: 106—114
[82] Du J, Sun T, Weng S, Chen X, Wang J. Biomacromolecules, 2007, 8: 3375—3381

[1] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[4] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[5] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[6] 吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 水溶性苝酰亚胺类材料的合成及其生物应用[J]. 化学进展, 2017, 29(2/3): 216-230.
[7] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[8] 李恬, 王祎龙, 郭方方, 时东陆. 复杂形貌磁性复合微球制备及其生物应用[J]. 化学进展, 2013, 25(12): 2053-2067.
[9] 张金超*, 胡毅*, 余四旺, 高愈希, 张海松. 转化医学研究中的生物无机化学问题探讨[J]. 化学进展, 2013, 25(04): 469-478.
[10] 陈梦君, 杨万泰, 尹梅贞* . 纳米粒子的分类合成及其在生物领域的应用[J]. 化学进展, 2012, 24(12): 2403-2414.
[11] 张金超 刘丹丹 周国强 申世刚. 纳米材料在组织工程中的应用*[J]. 化学进展, 2010, 22(11): 2232-2237.
[12] 姚响,庹新林,王晓工. 可降解聚氨酯型组织工程多孔支架材料的制备* [J]. 化学进展, 2009, 21(0708): 1546-1552.
[13] 魏宏亮,王连才,张爱英,朱凯强,冯增国. 可注射水凝胶的制备与应用*[J]. 化学进展, 2004, 16(06): 1008-.
[14] 崔俊锋,尹玉姬,何淑兰,姚康德. 骨组织工程支架材料研究进展*[J]. 化学进展, 2004, 16(02): 299-.
[15] 蔡开勇,林松柏,姚康德. 组织工程相关生物材料表面工程的研究进展[J]. 化学进展, 2001, 13(01): 56-.