English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 350-362 DOI: 10.7536/PC120735 前一篇   后一篇

• 综述与评论 •

多功能可交联材料在聚合物太阳能电池中的应用

王维, 周铭露, 梁露英, 王文*, 凌启淡*   

  1. 福建省高分子材料重点实验室 福建师范大学材料科学与工程学院 福州 350007
  • 收稿日期:2012-07-01 修回日期:2012-09-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 王文, 凌启淡 E-mail:polywangwen@yahoo.com.cn;lingqd@fjnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.60976019)和教育部高等学校博士学科点专项科研基金项目(No.20093223110002)资助

Application of Multifunctional and Crosslinkable Materials in Polymer Solar Cells

Wang Wei, Zhou Minglu, Liang Luying, Wang Wen*, Ling Qidan*   

  1. Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China
  • Received:2012-07-01 Revised:2012-09-01 Online:2013-02-24 Published:2012-12-28

近年来,可交联材料在有机光电器件领域,尤其是聚合物太阳能电池领域,得到了广泛的应用研究。可交联材料作为活性层中的给体材料或受体材料以及制作有序本体异质结聚合物太阳能电池,可以提高器件的稳定性及光电转化效率。可交联材料应用于聚合物太阳能电池的电子传输层或空穴传输层,可以提高器件的开路电压、转化效率、稳定性等各项性能参数。本文根据可交联材料在聚合物太阳能电池中的功能的不同,详细地描述了可交联材料的官能团种类、处理时间、温度以及引发剂等因素对聚合物太阳能电池光电性能的影响,同时评述了可交联材料应用于聚合物太阳能电池的缓冲层及制作有序本体异质结聚合物太阳能电池的研究进展,最后展望了可交联材料在该领域的发展前景。

Polymer solar cells (PSCs) offer great potential for fabrication of large-area, lightweight, and flexible organic solar cells by using low-cost printing and coating technologies. The power-conversion efficiencies have improved from 3% to almost 10% in recent years. Despite the advance on polymer solar cells performance, long-term stability is a primary area of concern for PSCs. However, it is highly challenging to develop PSC that can achieve high PCE while maintaining excellent ambient stability of the device. Recently, crosslinkable materials are widely used in the field of organic optical device, especially in polymer solar cells. Using these materials as donor, acceptor, or for fabrication of ordered bulk heterojunction, the stability and power-conversion efficiencies will be enhanced. And when these materials are applied to electron transport layer and hole transport layer, the power-conversion efficiencies, stability, fill factor, short-circuit current and other parameters will be correspondingly improved simultaneously. In the paper, the influence of crosslinkable materials to photoelectric performance is described in detail according to their diverse functions for polymer solar cells, such as the kind of functional groups, treatment time, temperature, initiator. At the same time, the research progress of crosslinkable materials utilizing as buffer layer or for fabrication of ordered bulk heterojunction polymer solar cell is discussed. Finally, we look forward to its development prospects in this field. Contents
1 Introduction
2 Optimization of the morphology
2.1 Modification of the acceptor material
2.2 Modification of the donor material
2.3 Doping photo-curable crosslinker
3 Employed as an interlayer
3.1 Electron transport layer
3.2 Hole transport layer
4 Fabrication of ordered bulk heterojunction
5 Outlook and conclusion

中图分类号: 

()

[1] Yang T, Cai W, Qin D, Wang E, Lan L, Gong X, Peng J, Cao Y. J. Phys. Chem. C, 2010, 114: 6849-6853
[2] Park H J, Kang M G, Ahn S H, Guo L J. Adv. Mater., 2010, 22: E247-E253
[3] Calvert P. Chem. Mater., 2001, 13: 3299-3305
[4] Dennler G, Scharber M C, Ameri T, Denk P, Forberich K, Waldauf C, Brabec C J. Adv. Mater., 2008, 20: 579-583
[5] Dou L, You J, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emer K, Li G, Yang Y. Nat. Photon, 2012, 6: 180-185
[6] Jorgensen M, Norrman K, Gevorgyan S A, Tromholt T, Andreasen B, Krebs F C. Adv. Mater., 2012, 24: 580-612
[7] Miyanishi S, Tajima K, Hashimoto K. Macromolecules, 2009, 42: 1610-1618
[8] Lee R H, Syu J Y, Huang J L. Polym. Adv. Technol., 2011, 22: 2110-2122
[9] Kim B J, Miyamoto Y, Ma B, Fr閏het J M J. Adv. Funct. Mater., 2009, 19: 2273-2281
[10] Griffini G, Douglas J D, Piliego C, Holcombe T W, Turri S, Fr閏het J M, Mynar J L. Adv. Mater., 2011, 23: 1660-1664
[11] Kim H J, Han A R, Cho C H, Kang H, Cho H H, Lee M Y, Fr閏het J M J, Oh J H, Kim B J. Chem. Mater., 2012, 24: 215-221
[12] Deng X Y, Yu J, Wong K Y. Synth. Met., 2011, 161: 203-207
[13] Gearba I R, Nam C Y, Pindak R, Black C T. Appl. Phys. Lett., 2009, 95: art. no. 173307
[14] Nam C Y, Qin Y, Park Y S, Hlaing H, Lu X, Ocko B M, Black C T, Grubbs R B. Macromolecules, 2012, 45: 2338-2347
[15] Drees M, Hoppe H, Winder C, Neugebauer H, Sariciftci N S, Schwinger W, Schäffler F, Topf C, Scharber M C, Zhu Z, Gaudiana R. J. Mater. Chem., 2005, 15: 5158-5163
[16] Nierengarten J F, Setayesh S. New J. Chem., 2006, 30: 313-316
[17] Markov D E, Amsterdam E, Blom P W M, Sieval A B, Hummelen J C. J. Phys. Chem. A, 2005, 109: 5266-5274
[18] Cheng Y J, Hsieh C H, Li P J, Hsu C S. Adv. Funct. Mater., 2011, 21: 1723-1732
[19] Ryu M S, Jang J. Sol. Energy Mater. Sol. Cells, 2010, 94: 1384-1388
[20] Gholamkhass B, Holdcroft S. Chem. Mater., 2010, 22: 5371-5376
[21] Li C Y, Wen T C, Lee T H, Guo T F, Huang J C A, Lin Y C, Hsu Y J. J. Mater. Chem., 2009, 19: 1643-1647
[22] Lee K, Kim J Y, Park S H, Kim S H, Cho S, Heeger A J. Adv. Mater., 2007, 19: 2445-2449
[23] Wang D H, Im S H, Lee H K, Park O O, Park J H. J. Phys. Chem. C, 2009, 113: 17268-17273
[24] Ichikawa M, Shimizu C, Koyama T, Taniguchi Y. Phys. Status Solidi (a), 2008, 205: 1222-1225
[25] Armstrong N R, Veneman P A, Ratcliff E, Placencia D, Brumbach M. Acc. Chem. Res., 2009, 42: 1748-1757
[26] He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S, Cao Y. Adv. Mater., 2011, 23: 4636-4643
[27] Park J H, Lee T W, Chin B D, Wang D H, Park O O. Macromol. Rapid. Commun., 2010, 31: 2095-2108
[28] Hsieh C H, Cheng Y J, Li P J, Chen C H, Dubosc M, Liang R M, Hsu C S. J. Am. Chem. Soc., 2010, 132: 4887-4893
[29] Cheng Y J, Hsieh C H, He Y, Hsu C S, Li Y. J. Am. Chem. Soc., 2010, 132: 17381-17383
[30] Cheng Y J, Cao F Y, Lin W C, Chen C H, Hsieh C H. Chem. Mater., 2011, 1512-1518
[31] Hains A W, Chen H Y, Reilly T H, Gregg B A. ACS Appl. Mater. Interfaces, 2011, 3: 4381-4387
[32] Cho N, Yip H L, Davies J A, Kazarinoff P D, Zeigler D F, Durban M M, Segawa Y, O'Malley K M, Luscombe C K, Jen A K Y. Adv. Energy Mater., 2011, 1: 1148-1153
[33] Pingree L S C, MacLeod B A, Ginger D S. J. Phys. Chem. C, 2008, 112: 7922-7927
[34] Kang N Su, Ju B K, Lee T W, Choi D H, Hong J M, Yu J W. Sol. Energy Mater. Sol. Cells, 2011, 95: 2831-2836
[35] Dijken A V, Bastiaansen J J A M, Kiggen N M M, Langeveld B M W, Rothe C, Monkman A, Bach I, Stossel P, Brunner K. J. Am. Chem. Soc., 2004, 126: 7718-7727
[36] Grazulevicius J V, Strohriegl P, Pielichowski J, Pielichowski K. Prog. Polym. Sci., 2003, 28: 1297-1353
[37] Tria M C, Liao K S, Alley N, Curran S, Advincula R. J. Mater. Chem., 2011, 21: 10261-10264
[38] Sun Y, Chien S C, Yip H L, Zhang Y, Chen K S, Zeigler D F, Chen F C, Lin B, Jen A K Y. Chem. Mater., 2011, 23: 5006-5015
[39] Coakley K M, McGehee M D. Chem. Mater., 2004, 16: 4533-4542
[40] Koster L J A, Mihailetchi V D, Blom P W M. Appl. Phys. Lett., 2006, 88: art. no. 093511
[41] Sagawa T, Yoshikawa S, Imahori H. J. Phys. Chem. Lett., 2010, 1: 1020-1025
[42] Png R Q, Chia P J, Tang J C, Liu B, Sivaramakrishnan S, Zhou M, Khong S H, Chan H S O, Burroughes J H, Chua L L, Friend R H, Ho P K H. Nat. Mater., 2010, 9: 152-158
[43] Charas A, Ferreira Q, Farinhas J, Matos M, Alcaácer L S, Morgado J. Macromolecules, 2009, 42: 7903-7912
[44] Farinhas J, Ferreira Q, di Paolo R E, Alc醕er L, Morgado J, Charas A. J. Mater. Chem., 2011, 21: 12511-12519
[45] Chang C Y, Wu C E, Chen S Y, Cui C, Cheng Y J, Hsu C S, Wang Y L, Li Y. Angew Chem. Int. Ed. Engl., 2011, 50: 9386-9390
[46] Peters C H, Sachs-Quintana I T, Kastrop J P, Beaupr? S, Leclerc M, McGehee M D. Adv. Energy. Mater., 2011, 1: 491-494

[1] 邓璐遥, 李少路, 秦一文, 胡云霞. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907.
[2] 张力红, 于庆才, 万俊华*. 基于噻咯的聚合物给体光伏材料[J]. 化学进展, 2013, 25(05): 752-760.
[3] 杨正龙, 卜弋龙, 陈秋云. 高效率窄带隙聚合物太阳能电池材料[J]. 化学进展, 2011, 23(12): 2607-2616.