English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1275-1293 DOI: 10.7536/PC230530   后一篇

• 综述 •

自愈合聚氨酯的研究进展及其在柔性传感领域的应用

陈超1,2, 王古月1,3, 田莹1,2, 孔正阳4, 李凤龙1,2, 朱锦1,*(), 应邬彬1,5,*()   

  1. 1 中国科学院宁波材料技术与工程研究所 宁波 315201
    2 中国科学院大学 北京 100049
    3 北京科技大学 北京 100083
    4 韩国汉阳大学 首尔04763
    5 韩国科学技术院KAIST 大田34141
  • 收稿日期:2023-05-30 修回日期:2023-07-12 出版日期:2023-09-24 发布日期:2023-08-07
  • 基金资助:
    国家自然科学基金(52003278); 国家自然科学基金(52211540393)

Research Progress on Self-Healing Polyurethane and Its Applications in the Field of Flexible Sensors

Chao Chen1,2, Guyue Wang1,3, Ying Tian1,2, Zhengyang Kong4, Fenglong Li1,2, Jin Zhu1(), Wu Bin Ying1,5()   

  1. 1 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 University of Chinese Academy of Sciences,Bejing 100049, China
    3 University of Science and Technology Beijing,Beijing 100083, China
    4 Hanyang University, Seoul 04763, Korea
    5 Korea Advanced Institute of Science and Technology, Daejeon 34101, Korea
  • Received:2023-05-30 Revised:2023-07-12 Online:2023-09-24 Published:2023-08-07
  • Contact: *e-mail: yingwubin@kaist.ac.kr(Wu Bin Ying); jzhu@nimte.ac.cn(Jin Zhu)
  • Supported by:
    The National Natural Science Foundation of China(52003278); The National Natural Science Foundation of China(52211540393)

聚氨酯是一类常见的聚合物,因其具有出色的综合性能而受到了广泛关注。但是,对于聚氨酯而言,任何微小的损坏都会极大地缩短其使用寿命。因此,可以通过赋予聚氨酯自愈合性能来解决这一问题。聚氨酯的愈合机理中最常见的是内在驱动力,指的是通过分子结构设计,不需要外加愈合剂,使得聚氨酯的分子链自发运动重新缠结在一起。内在驱动通常分为可逆共价键(如二硫键、Diels-Alder 反应、硼酸酯键等) 和动态非共价相互作用(如氢键、离子键、金属配位键、主客体结构等)。聚氨酯主链中可以存在单一的内在驱动力,也可以同时存在多个内在驱动力共同作用。然而,自愈合聚氨酯仅仅具有自发修复损伤,延长其使用寿命并降低维护成本的这一优点仍不能满足聚氨酯在一些特殊场合的使用需求。为了进一步实现自愈合聚氨酯多场景的应用,在保留聚氨酯的自愈合性能的同时,考虑引入一些新的官能团,赋予聚氨酯一些特殊性能,如形状记忆、可降解、抗菌、生物相容等,实现自愈合聚氨酯的功能化集成。更重要的是,这些具有功能化的自愈合聚氨酯可以代替传统材料,作为柔性传感领域中的介电材料、基底材料或者封装材料,用于提高柔性传感器的可靠性和耐久性。因此,本文重点介绍了自愈合聚氨酯的自愈合机理,随后介绍了自愈合聚氨酯的功能化集成以及其在柔性传感领域的应用,最后在此基础上展望了自愈合聚氨酯的未来发展前景。

Polyurethane, a prevalent polymer, has garnered considerable attention owing to its exceptional overall performance within various applications. However, even minor damages can significantly curtail the service life of polyurethane. Consequently, a promising approach to address this challenge involves conferring self-healing properties upon polyurethane. Among the various healing mechanisms found in self-healing polyurethane, the intrinsic driving force stands out as the most common. This mechanism entails the spontaneous re-entanglement of polyurethane molecular chains through meticulous molecular structure design, obviating the necessity for external healing agents. Intrinsic driving force encompasses reversible covalent bonds (e.g., disulfide bonds, Diels-Alder reactions, and boronic ester bonds) as well as dynamic non-covalent interactions (e.g., hydrogen bonds, ionic bonds, metal coordination bonds, and host-guest interactions). The polyurethane main chain can possess a single intrinsic driving force or multiple intrinsic driving forces concurrently. Nevertheless, while self-healing polyurethane alone presents advantages in terms of extending service life and reducing maintenance costs through damage repair, it still falls short of meeting the usage requirements in certain specialized applications. To further enable the versatile application of self-healing polyurethane while preserving its self-healing properties, the incorporation of new functional groups becomes an enticing prospect. These functional groups can bestow specific properties upon polyurethane, such as shape memory, degradability, antibacterial properties and biocompatibility, thereby achieving functional integration within self-healing polyurethane. Importantly, these functionalized self-healing polyurethanes possess the potential to supplant traditional materials as dielectric materials, substrate materials, or encapsulation materials in the realm of flexible sensors. Consequently, they contribute to enhancing the reliability and durability of flexible sensors. Therefore, this article primarily focuses on elucidating the self-healing mechanism of self-healing polyurethane. Subsequently, it delves into the integration of functionality within self-healing polyurethane and its application within the field of flexible sensors. Lastly, based on these insights, the paper provides a glimpse into the future prospects for the development of self-healing polyurethane.

Contents

1 Introduction

2 Self-healing mechanism of polyurethane (PU)

2.1 Reversible covalent bonds

2.2 Dynamic noncovalent interactions

2.3 Combination of covalent bonds and noncovalent interactions

3 Functionalization of self-healing polyurethane

3.1 Shape memory

3.2 Degradability

3.3 Antibacterial performance

3.4 Biocompatibility

4 Application of self-healing PU in flexible sensors

4.1 Self-healing PU based dielectric layer

4.2 Self-healing PU based flexible electrode

4.3 Self-healing PU based encapsulated layer

5 Conclusion and outlook

()
图1 自愈合机理和功能化自愈合聚氨酯以及以自愈合聚氨酯为基底制备的柔性传感器
Fig.1 Self-healing mechanism and functionalization of the self-healing polyurethane and the flexible sensor based on self-healing polyurethane
图2 (a) Diels-Alder反应;(b) Diels-Alder反应的自愈合机理;(c) 含有Diels-Alder反应的聚氨酯和 (d) 不含Diels-Alder反应的聚氨酯在一定温度下的自愈合图片[20]
Fig.2 (a) Diels-Alder interaction; (b) Self-healing mechanism of Diels-Alder interaction; Self-healing pictures of polyurethane with Diels-Alder reaction(c) and polyurethane without Diels-Alder reaction (d) at a certain temperature[20]. Copyright 2019, American Chemical Society
图3 (a) BS-PU的化学结构;(b) 拉长的PU膜示意图,裂缝可以在动态二硫键的驱动下自我修复(右);(c)缺口和自愈的BS-PU-3薄膜的光学显微镜图像;(d) 自愈合后的BS-PU的560 g的举重测试[29]
Fig.3 (a) Chemical structure of BS-PU; (b) Schematic of an elongated PU film, and the crack could be self-healed driven by dynamic disulfide bonds (right); (c) Optical microscope images of the notched and self-healed BS-PU-3 film; (d) Weight lifting test demonstrating the self-healing capability of BS-PU with a load of 560 g[29]. Copyright 2020, American Chemical Society
图4 (a) 自愈合聚氨酯 (CBPU) 中的动态键:硫代氨基甲酸乙酯交换[35];(b) 含有硫代氨基甲酸酯键的聚氨酯的自愈合图像[35];(c) 可见光照射下的二硒化合作用[36];(d) 含有二硒键的自愈合聚氨酯在压力下的愈合行为:光照24 h后裂纹消失[36]
Fig.4 (a) Dynamic bonds contained in self-healing polyurethanes (CBPU): thiourethane exchange (b) Optical self-healing microscope images of polyurethanes containing thiourethane bonds[35]; (c) Diselenide metathesis under visible light irradiation[36]; (d) Healing behavior under pressure; the crack disappeared after 24 h light irradiation[36]. Copyright 2018, American Chemical Society
图5 (a) 含有非平面环和 (b) 含有苯环的多重氢键聚氨酯的结构式;(c) 自愈合聚氨酯在一定温度下划痕消失的显微图[46]
Fig.5 Structure of polyurethanes with multiple hydrogen bonds featuring (a) non-planar rings and (b) benzene rings;(c) Microscope images of self-healing polyurethane scratch disappearance at a certain temperature[46]. Copyright 2021, Willey
图6 (a) 离子键的自愈合机理;(b) 有缺口的含有离子键的自愈合聚氨酯薄膜的光学显微镜图像和三维表面映射显微镜图像和 (c) 划痕深度图[49]
Fig.6 (a) Self-healing mechanism of ionic bonds; (b) Optical microscopic images and 3D surface mapping microscopic images of the notched i-PU film with ionic bond; (c) Scratch depth diagram[49]. Copyright 2022, Willey
图7 (a) 金属配位键的自愈合机理和 (b) 含有金属配位键的自愈合聚氨酯在一定温度下的划痕消失图[62];(c) Donor-Acceptor相互作用示意图和含有Donor-Acceptor相互作用的自愈合聚氨酯在一定温度下自愈合的偏光显微图[67]
Fig.7 (a) Self-healing mechanism of metal ligand bonds; (b) Digital photos and optical microscope photos of the cutting-healing-stretching procedure of self-healing polyurethanes containing metal ligand bonds[62]; (c) Schematic illustration of the breakup and restore of Donor-Acceptor self-assembly and (d) micrographs of self-healing polyurethane containing Donor-Acceptor at certain temperatures[67]. Copyright 2021, Willey
图8 (a) 聚氨酯的自愈合机理和形状记忆机理;(b) 自愈合聚氨酯的形状记忆特性以及 (c)自愈合性能[76]
Fig.8 (a) Self-healing mechanism and shape memory mechanism of polyurethane; (b) Shape memory performance and (c) self-healing properties of polyurethane[76]. Copyright 2018, Willey
图9 (a) 可降解的水凝胶与不可降解的水凝胶的分子结构以及 (b) 可降解的低温凝胶与不可降解的低温凝胶的质量损失对比图[93]
Fig.9 (a) Schematic structure of a self-healing polyurethane with degradable properties; (b) Weight loss of degradable hydrogels and non-degradable cryogels[93]. Copyright 2020, Willey
图10 (a) 自愈合聚氨酯 (CBPU) 中含有的动态键:硫代氨基甲酸酯键;(b) 自愈合聚氨酯的自愈合偏光显微图;(c) 自愈合聚氨酯的抗菌测试[35]
Fig.10 (a) Dynamic bonds contained in self-healing polyurethanes (CBPU): thiourethane exchange; (b) Optical self-healing microscope images of polyurethanes containing thiourethane bonds; (c) Antibacterial testing of self-healing polyurethane[35]. Copyright 2021, Elsevier
图11 (a) 具有生物相容性的自愈合聚氨酯的结构示意图;(b) 具有生物相容性的自愈合聚氨酯的自愈合演示;(c) 细胞在具有生物相容性的自愈合聚氨酯上生长的荧光染色图[113]
Fig.11 (a) Scheme of a self-healing polyurethane with biocompatibility; (b) Demonstration of self-healing with biocompatible self-healing polyurethane; (c) Fluorescent staining of cells grown on biocompatible self-healing polyurethane[113]. Copyright 2022, American Chemical Society
图12 (a) 可自愈合聚氨酯 (BS-PU) 的结构示意图;(b) 以BS-PU为基底制备的传感器的过程以及(c) 传感性能[29]
Fig.12 (a) Structure of self-healing polyurethane (BS-PU); (b) Process of preparing a sensor based on BS-PU and (c) its sensing performance[29]. Copyright 2020, American Chemical Society
图13 (a) 以自愈合聚氨酯为基底制备的柔性电极示意图;(b) 不同应变下的柔性电极;(c) 柔性电极的电学信号[129]
Fig.13 (a) Design of a flexible electrode based of self-healing polyurethane; (b) Flexible electrode under vary strain levels; (c) Analysis of the electrical signal generated by the flexible electrode[129]. Copyright 2019, Willey
图14 (a) 以自愈合聚氨酯为封装层制备传感器的示意图;(b) 封装后传感器的传感性能;(c) 聚氨酯封装层的自愈合性能示意图[138]
Fig.14 (a) Illustration of sensor fabrication using self-healing polyurethane as an encapsulation layer; (b) Sensing performance of the encapsulated sensor; (c) Illustration of self-healing properties of the polyurethane encapsulation layer[138]. Copyright 2020, American Chemical Society
[1]
Zhang L S, Huang M M, Yu R L, Huang J C, Dong X, Zhang R Y, Zhu J. J. Mater. Chem. A, 2014, 2(29): 11490.

doi: 10.1039/c4ta01640h     URL    
[2]
Zhang L S, Shams S S, Wei Y P, Liu X Q, Ma S Q, Zhang R Y, Zhu J. J. Mater. Chem. A, 2014, 2(47): 20010.

doi: 10.1039/C4TA05126B     URL    
[3]
Dong F, Maganty S, Meschter S J, Cho J. Prog. Org. Coat., 2018, 114: 58.
[4]
Zka B, Qiang T C, Rz A, Jy B, Lei S A, Wu B, Han H A, Cy A, Kai W A, Jin Z A. Polymer., 2019, 185: 121943.

doi: 10.1016/j.polymer.2019.121943     URL    
[5]
Wang S H, Oh J Y, Xu J, Tran H, Bao Z N. Acc. Chem. Res., 2018, 51(5): 1033.

doi: 10.1021/acs.accounts.8b00015     URL    
[6]
Wang X, Liu Y, Cheng H, Ouyang X. Adv. Funct. Mater., 2022, 32(27): 2200260.

doi: 10.1002/adfm.v32.27     URL    
[7]
Sui G P, Liu D Y, Liu Y H, Ji W J, Zhang Q, Fu Q. Polymer, 2019, 182: 121838.

doi: 10.1016/j.polymer.2019.121838     URL    
[8]
Li Z L, Zhu M M, Shen J L, Qiu Q, Yu J Y, Ding B. Adv. Funct. Mater., 2020, 30(6): 1908411.

doi: 10.1002/adfm.v30.6     URL    
[9]
Kumar S, Gupta T K, Varadarajan K M. Compos. B Eng., 2019, 177: 107285.

doi: 10.1016/j.compositesb.2019.107285     URL    
[10]
Cai W, Hu Y X, Pan Y, Zhou X, Chu F K, Han L F, Mu X W, Zhuang Z Y, Wang X, Xing W Y. J. Colloid Interface Sci., 2020, 561: 32.

doi: 10.1016/j.jcis.2019.11.114     URL    
[11]
Patrick J F, Robb M J, Sottos N R, Moore J S. Nature, 2016, 540: 363.

doi: 10.1038/nature21002    
[12]
Zhu D Y, Rong M Z, Zhang M Q. Prog. Polym. Sci., 2015, 49: 175.
[13]
Urban M W. Prog. Polym. Sci., 2009, 34(8): 679.

doi: 10.1016/j.progpolymsci.2009.03.004     URL    
[14]
Toohey K S, Sottos N R, White S R. Exp. Mech., 2009, 49(5): 707.

doi: 10.1007/s11340-008-9176-7     URL    
[15]
Nji J, Li G. Polymer, 2010, 51(25): 6021.

doi: 10.1016/j.polymer.2010.10.021     URL    
[16]
Toohey K S, Sottos N R, Lewis J A, Moore J S, White S R. Nat. Mater., 2007, 6(8): 581.

doi: 10.1038/nmat1934    
[17]
Jones N, Guoqiang L. Smart Mater. Struct., 2012, 21: 025011.

doi: 10.1088/0964-1726/21/2/025011     URL    
[18]
Deeken J S, Farona M F. Polym. Bull., 1992, 29(3/4): 295.

doi: 10.1007/BF00944822     URL    
[19]
Rivero G, Nguyen L T T, Hillewaere X K D, Du Prez F E. Macromolecules, 2014, 47(6): 2010.

doi: 10.1021/ma402471c     URL    
[20]
Truong T T, Thai S H, Nguyen H T, Phung D T T, Nguyen L T, Pham H Q, Nguyen L T T. Chem. Mater., 2019, 31(7): 2347.

doi: 10.1021/acs.chemmater.8b04624    
[21]
Tiwari N, Ho F, Ankit A, Mathews N. J. Mater. Chem. A, 2018, 6(43): 21428.

doi: 10.1039/C8TA08328B     URL    
[22]
Feng L B, Yu Z Y, Bian Y H, Lu J S, Shi X T, Chai C S. Polymer, 2017, 124: 48.

doi: 10.1016/j.polymer.2017.07.049     URL    
[23]
Postiglione G, Turri S, Levi M. Prog. Org. Coat., 2015, 78: 526.
[24]
Wang T, Yu W C, Zhou C G, Sun W J, Zhang Y P, Jia L C, Gao J F, Dai K, Yan D X, Li Z M. Compos. B Eng., 2020, 193: 108015.

doi: 10.1016/j.compositesb.2020.108015     URL    
[25]
Fildes F J T, Tobolsky A V. J. Polym. Sci. A-1 Polym. Chem., 1972, 10(1): 151.
[26]
Canadell J, Goossens H, Klumperman B. Macromolecules, 2011, 44(8): 2536.

doi: 10.1021/ma2001492     URL    
[27]
Kim S M, Jeon H, Shin S H, Park S A, Jegal J, Hwang S Y, Oh D X, Park J. Adv. Mater., 2018, 30(1): 1705145.

doi: 10.1002/adma.v30.1     URL    
[28]
Lai Y, Kuang X, Zhu P, Huang M M, Dong X, Wang D J. Adv. Mater., 2018, 30(38): 1802556.

doi: 10.1002/adma.v30.38     URL    
[29]
Ying W B, Yu Z, Kim D H, Lee K J, Hu H, Liu Y W, Kong Z Y, Wang K, Shang J, Zhang R Y, Zhu J, Li R W. ACS Appl. Mater. Interfaces, 2020, 12(9): 11072.

doi: 10.1021/acsami.0c00443     URL    
[30]
Li F L, Xu Z F, Hu H, Kong Z Y, Chen C, Tian Y, Zhang W W, Ying W B, Zhang R Y, Zhu J. Chem. Eng. J., 2021, 410: 128363.

doi: 10.1016/j.cej.2020.128363     URL    
[31]
Liu Q, Liu Y B, Zheng H, Li C M, Zhang Y, Zhang Q Y. J. Polym. Sci., 2020, 58(8): 1092.

doi: 10.1002/pola.v58.8     URL    
[32]
Gao W T, Bie M Y, Quan Y W, Zhu J Y, Zhang W Q. Polymer, 2018, 151: 27.

doi: 10.1016/j.polymer.2018.07.047     URL    
[33]
Dong F H, Yang X X, Guo L Z, Wang Y Q, Shaghaleh H, Huang Z, Xu X, Wang S F, Liu H. J. Mater. Chem. A, 2022, 10(18): 10139.

doi: 10.1039/D2TA00802E     URL    
[34]
Xu J H, Wang H, Du X S, Cheng X, Du Z L, Wang H B. Chem. Eng. J., 2021, 426: 130724.

doi: 10.1016/j.cej.2021.130724     URL    
[35]
Ying W B, Liu H X, Gao P Y, Kong Z Y, Hu H, Wang K, Shen A, Jin Z J, Zheng L, Guo H X, Zhang R Y, Zhu J. Chem. Eng. J., 2021, 420: 127691.

doi: 10.1016/j.cej.2020.127691     URL    
[36]
Xia J H, Li T Y, Lu C J, Xu H P. Macromolecules, 2018, 51(19): 7435.

doi: 10.1021/acs.macromol.8b01597     URL    
[37]
Utrera-Barrios S, Verdejo R, LÓpez-Manchado M A, Hernández Santana M. Mater. Horiz., 2020, 7(11): 2882.

doi: 10.1039/D0MH00535E     URL    
[38]
Zeng Y, Chen Y Z, Sha D, Wu Y C, Qiu R H, Liu W D. ACS Sustain. Chem. Eng., 2022, 10(35): 11524.

doi: 10.1021/acssuschemeng.2c02877     URL    
[39]
Tan M W M, Thangavel G, Lee P S. Adv. Funct. Mater., 2021, 31(34): 2103097.

doi: 10.1002/adfm.v31.34     URL    
[40]
Zhu X B, Zheng W R, Zhao H C, Wang L P. J. Mater. Chem. A, 2021, 9(36): 20737.

doi: 10.1039/D1TA05483J     URL    
[41]
Wang J P, Fu C H, Wu Z H, Lan H, Cui S W, Qi T. J. Mater. Chem. A, 2022, 10(39): 21093.

doi: 10.1039/D2TA04932E     URL    
[42]
Song Y, Liu Y, Qi T, Li G L. Angew. Chem. Int. Ed., 2018, 57(42): 13838.

doi: 10.1002/anie.201807622     pmid: 30144244
[43]
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Adv. Mater., 2021, 33(28): e2000619.
[44]
Tu H, Zhu M, Duan B, Zhang L. Adv. Mater., 2021, 33(28): e2000682.
[45]
Chan N J A, Gu D Y, Tan S, Fu Q, Pattison T G, O’Connor A J, Qiao G G. Nat. Commun., 2020, 11: 1630.

doi: 10.1038/s41467-020-15312-x    
[46]
Li Z Q, Zhu Y L, Niu W W, Yang X, Jiang Z Y, Lu Z Y, Liu X K, Sun J Q. Adv. Mater., 2021, 33(27): 2101498.

doi: 10.1002/adma.v33.27     URL    
[47]
Zhang E D, Liu X H, Liu Y C, Shi J, Li X B, Xiong X Y, Xu C G, Wu K, Lu M G. J. Mater. Chem. A, 2021, 9(40): 23055.

doi: 10.1039/D1TA05148B     URL    
[48]
Yao Y, Liu B, Xu Z Y, Yang J H, Liu W G. Mater. Horiz., 2021, 8(10): 2742.

doi: 10.1039/D1MH01217G     URL    
[49]
Chen C, Ying W B, Li J Y, Kong Z Y, Li F L, Hu H, Tian Y, Kim D H, Zhang R Y, Zhu J. Adv. Funct. Mater., 2022, 32(4): 2106341.

doi: 10.1002/adfm.v32.4     URL    
[50]
Mostafavi A, Daemi H, Rajabi S, Baharvand H. Carbohydr. Polym., 2021, 257: 117632.

doi: 10.1016/j.carbpol.2021.117632     URL    
[51]
Cheng Y, Zhu W D, Lu X F, Wang C. Nano Energy, 2022, 102: 107636.

doi: 10.1016/j.nanoen.2022.107636     URL    
[52]
Boahen E K, Pan B H, Kweon H, Kim J S, Choi H, Kong Z Y, Kim D J, Zhu J, Ying W B, Lee K J, Kim D H. Nat. Commun., 2022, 13: 7699.

doi: 10.1038/s41467-022-35434-8     pmid: 36509757
[53]
Yu Z C, Wu P Y. Mater. Horiz., 2021, 8(7): 2057.

doi: 10.1039/D1MH00461A     URL    
[54]
Kim H J, Chen B H, Suo Z G, Hayward R C. Science, 2020, 367(6479): 773.

doi: 10.1126/science.aay8467     URL    
[55]
Duan N, Sun Z, Ren Y Y, Liu Z Y, Liu L L, Yan F. Polym. Chem., 2020, 11(4): 867.

doi: 10.1039/C9PY01620A     URL    
[56]
Chen S J, Mo F N, Yang Y, Stadler F J, Chen S G, Yang H P, Ge Z C. J. Mater. Chem. A, 2015, 3(6): 2924.

doi: 10.1039/C4TA06304J     URL    
[57]
Pan G F, Wang Z, Gong X B, Wang Y F, Ge X, Xing R G. Chem. Eng. J., 2022, 446: 137228.

doi: 10.1016/j.cej.2022.137228     URL    
[58]
Lai J C, Jia X Y, Wang D P, Deng Y B, Zheng P, Li C H, Zuo J L, Bao Z N. Nat. Commun., 2019, 10: 1164.

doi: 10.1038/s41467-019-09130-z    
[59]
Li C H, Zuo J L. Adv. Mater., 2020, 32(27): e1903762.
[60]
Wang Z H, Xie C, Yu C J, Fei G X, Wang Z H, Xia H S. Macromol. Rapid Commun., 2018, 39(6): 1700678.

doi: 10.1002/marc.v39.6     URL    
[61]
Xu H L, Zhao S W, Yuan A Q, Zhao Y L, Wu X D, Wei Z K, Lei J X, Jiang L. Small, 2023, 19(26): 2300626.

doi: 10.1002/smll.v19.26     URL    
[62]
Teng J W, Qu L, Liu Z Q, Qin Z H, Xu J, Wang Z N, Hou Z S. ACS Appl. Polym. Mater., 2022, 4(10): 7801.

doi: 10.1021/acsapm.2c01343     URL    
[63]
Ikkanda B A, Iverson B L. Chem. Commun., 2016, 52(50): 7752.

doi: 10.1039/C6CC01861K     URL    
[64]
Li Z Y, Davidson-Rozenfeld G, Vázquez-González M, Fadeev M, Zhang J J, Tian H, Willner I. J. Am. Chem. Soc., 2018, 140(50): 17691.

doi: 10.1021/jacs.8b10481     URL    
[65]
Wang C, Fadeev M, Vázquez-González M, Willner I. Adv. Funct. Mater., 2018, 28(35): 1803111.

doi: 10.1002/adfm.v28.35     URL    
[66]
Pramanik B, Ahmed S, Singha N, Das B K, Dowari P, Das D. Langmuir, 2019, 35(2): 478.

doi: 10.1021/acs.langmuir.8b03820     pmid: 30561205
[67]
Ying wu bin, Wang G Y, Kong Z Y, Yao C K, Wang Y B, Hu H, Li F L, Chen C, Tian Y, Zhang J W, Zhang R Y, Zhu J. Adv. Funct. Mater., 2021, 31(10): 2009869.

doi: 10.1002/adfm.v31.10     URL    
[68]
Cao Y, Tan yu jun, Li S, Lee W W, Guo H C, Cai Y Q, Wang C, Tee B C K. Nat. Electron., 2019, 2(2): 75.

doi: 10.1038/s41928-019-0206-5    
[69]
Xu J, Wang X, Zhang X, Zhang Y, Yang Z, Li S, Tao L, Wang Q, Wang T. Chem. Eng. J., 2023, 451: 138673.

doi: 10.1016/j.cej.2022.138673     URL    
[70]
Liu X J, Liu X, Li W J, Ru Y, Li Y H, Sun A L, Wei L H. Chem. Eng. J., 2021, 410: 128300.

doi: 10.1016/j.cej.2020.128300     URL    
[71]
Yang X X, Wang S B, Liu X X, Huang Z, Huang X J, Xu X, Liu H, Wang D, Shang S B. Green Chem., 2021, 23(17): 6349.

doi: 10.1039/D1GC01936H     URL    
[72]
Zhang L Z, Liu Z H, Wu X L, Guan Q B, Chen S, Sun L J, Guo Y F, Wang S L, Song J C, Jeffries E M, He C L, Qing F L, Bao X G, You Z W. Adv. Mater., 2019, 31(23): 1901402.

doi: 10.1002/adma.v31.23     URL    
[73]
Wang L, Yang K, Li X Z, Zhang X H, Zhang D W, Wang L N, Lee C S. Acta Biomater., 2021, 124: 139.

doi: 10.1016/j.actbio.2021.01.038     pmid: 33524557
[74]
Fan W H, Jin Y, Shi L J, Du W N, Zhou R, Lai S Q, Shen Y C, Li Y P. ACS Appl. Mater. Interfaces, 2020, 12(5): 6383.

doi: 10.1021/acsami.9b18985     URL    
[75]
Shi Z, Kang J, Zhang L. ACS Appl. Mater. Interfaces, 2020, 12(20): 23484.

doi: 10.1021/acsami.0c04414     URL    
[76]
Ur Rehman H, Chen Y J, Hedenqvist M S, Li H, Xue W C, Guo Y L, Guo Y P, Duan H N, Liu H Z. Adv. Funct. Mater., 2018, 28(7): 1704109.

doi: 10.1002/adfm.v28.7     URL    
[77]
Yang H, Leow W R, Wang T, Wang J, Yu J C, He K, Qi D P, Wan C J, Chen X D. Adv. Mater., 2017, 29(33): 1701627.

doi: 10.1002/adma.v29.33     URL    
[78]
Zhang Y, Yin X Y, Zheng M Y, Moorlag C, Yang J, Wang Z L. J. Mater. Chem. A, 2019, 7(12): 6972.

doi: 10.1039/c8ta12428k    
[79]
Wang W, Shen D F, Li X, Yao Y, Lin J P, Wang A, Yu J, Wang Z L, Hong S W, Lin Z Q, Lin S L. Angew. Chem. Int. Ed., 2018, 57(8): 2139.

doi: 10.1002/anie.201712100     pmid: 29323464
[80]
Zheng K W, Tian Y Z, Fan M J, Zhang J Y, Cheng J. J. Appl. Polym. Sci., 2018, 135(13): 46049.

doi: 10.1002/app.v135.13     URL    
[81]
Zhang W W, Leng X F, Gao M Y, Wei Z Y, Wang Y Y, Li Y. Polym. Test., 2021, 96: 107099.

doi: 10.1016/j.polymertesting.2021.107099     URL    
[82]
Menon A V, Madras G, Bose S. Polym. Chem., 2019, 10(32): 4370.

doi: 10.1039/C9PY00854C     URL    
[83]
Wu S D, Hsu S H. Biofabrication, 2021, 13(4): 045029.

doi: 10.1088/1758-5090/ac2789    
[84]
Wang J, Lin X, Wang R, Lu Y, Zhang L. Adv. Funct. Mater., 2022, 33(15): 2211579.

doi: 10.1002/adfm.v33.15     URL    
[85]
Worch J C, Dove A P. ACS Macro. Lett., 2020, 9(11): 1494.

doi: 10.1021/acsmacrolett.0c00582     URL    
[86]
Fortman D J, Brutman J P, de Hoe G X, Snyder R L, Dichtel W R, Hillmyer M A. ACS Sustain. Chem. Eng., 2018, 6(9): 11145.

doi: 10.1021/acssuschemeng.8b02355     URL    
[87]
Shuai L, Jun Z, Jianjun C, Ming Y, Xuepeng L, Zhiguo J. Polym. Eng. Sci., 2019, 59(s2): E310.
[88]
Xie F W, Zhang T L, Bryant P, Kurusingal V, Colwell J M, Laycock B. Prog. Polym. Sci., 2019, 90: 211.

doi: 10.1016/j.progpolymsci.2018.12.003     URL    
[89]
Han J, Chen B, Ye L, Zhang A Y, Zhang J, Feng Z G. Front. Mater. Sci. China, 2009, 3(1): 25.

doi: 10.1007/s11706-009-0013-4     URL    
[90]
Acik G, Karabulut H R F, Altinkok C, Karatavuk A O. Polym. Degrad. Stab., 2019, 165: 43.

doi: 10.1016/j.polymdegradstab.2019.04.015     URL    
[91]
Shaabani A, Sedghi R, Motasadizadeh H, Dinarvand R. Chem. Eng. J., 2021, 411: 128449.

doi: 10.1016/j.cej.2021.128449     URL    
[92]
Daemi H, Rajabi-Zeleti S, Sardon H, Barikani M, Khademhosseini A, Baharvand H. Biomaterials, 2016, 84: 54.

doi: 10.1016/j.biomaterials.2016.01.025     URL    
[93]
Lin T W, Hsu S H. Adv. Sci., 2020, 7(3): 1901388.

doi: 10.1002/advs.v7.3     URL    
[94]
Dallinger A, Keller K, Fitzek H, Greco F. ACS Appl. Mater. Interfaces, 2020, 12(17): 19855.

doi: 10.1021/acsami.0c03148     URL    
[95]
Zhang H, Chen G P, Yu Y R, Guo J H, Tan Q, Zhao Y J. Adv. Sci., 2020, 7(16): 2000789.

doi: 10.1002/advs.v7.16     URL    
[96]
Shi C Y, Zhang Q, Yu C Y, Rao S J, Yang S, Tian H, Qu D H. Adv. Mater., 2020, 32(23): 2000345.

doi: 10.1002/adma.v32.23     URL    
[97]
Duan J, Jiang G. Polymers (Basel), 2022, 14(1): 213.
[98]
Xia Q F, Yang L, Hu K, Li K J, Xiang J, Liu G Y, Wang Y B. ACS Appl. Mater. Interfaces, 2019, 11(2): 2352.

doi: 10.1021/acsami.8b17061     URL    
[99]
Xie X L, Sun T C, Xue J Z, Miao Z H, Yan X, Fang W W, Li Q, Tang R P, Lu Y, Tang L X, Zha Z B, He T. Adv. Funct. Mater., 2020, 30(17): 2070106.

doi: 10.1002/adfm.v30.17     URL    
[100]
Huang Z X, Nazifi S, Cheng K, Karim A, Ghasemi H. Chem. Eng. J., 2021, 422: 130085.

doi: 10.1016/j.cej.2021.130085     URL    
[101]
Ding Y Y, Sun Z, Shi R W, Cui H Q, Liu Y Y, Mao H L, Wang B, Zhu D M, Yan F. ACS Appl. Mater. Interfaces, 2019, 11(3): 2860.

doi: 10.1021/acsami.8b19746     URL    
[102]
Zeng W H, Jin Y, Li Y P, Zhou R, Shi L J, Bai L, Shang X, Li J. Prog. Org. Coat., 2023, 178: 107461.
[103]
Feng H M, Wang W, Wang T, Zhang L, Li W, Hou J, Chen S G. J. Mater. Sci. Technol., 2023, 133: 89.

doi: 10.1016/j.jmst.2022.06.019     URL    
[104]
Li Q, Cao L, Wang W, Qin X, Chen S. Composites Part A, 2022, 163: 107213.

doi: 10.1016/j.compositesa.2022.107213     URL    
[105]
Xu Z Q, Wang X H, Liu X M, Cui Z D, Yang X J, Yeung K W K, Chung J C, Chu P K, Wu S L. ACS Appl. Mater. Interfaces, 2017, 9(45): 39657.

doi: 10.1021/acsami.7b10818     URL    
[106]
Wang H B, Yan R, Zou Y K, Xing D M, Zhong K. J. Mater. Chem. B, 2022, 10(7): 1085.

doi: 10.1039/D1TB02710G     URL    
[107]
Jiang C Y, Zhang L Z, Yang Q, Huang S X, Shi H P, Long Q, Qian B, Liu Z H, Guan Q B, Liu M J, Yang R H, Zhao Q, You Z W, Ye X F. Nat. Commun., 2021, 12: 4395.

doi: 10.1038/s41467-021-24680-x    
[108]
Liu J, Qu M Y, Wang C R, Xue Y M, Huang H, Chen Q M, Sun W J, Zhou X W, Xu G H, Jiang X. Small, 2022, 18(17): e2106172.
[109]
Liang Y P, He J H, Guo B L. ACS Nano, 2021, 15(8): 12687.

doi: 10.1021/acsnano.1c04206     URL    
[110]
Huang R, Zhang X, Li W, Shang L, Wang H, Zhao Y. Adv. Sci. (Weinh), 2021, 8(17): e2100201.
[111]
Simões D, Miguel S P, Ribeiro M P, Coutinho P, Mendonça A G, Correia I J. Eur. J. Pharm. Biopharm., 2018, 127: 130.

doi: 10.1016/j.ejpb.2018.02.022     URL    
[112]
Tamura K, Maruyama T, Sakurai S. Gen. Thorac. Cardiovasc. Surg., 2019, 67(3): 277.

doi: 10.1007/s11748-018-1010-2    
[113]
Shao Y, Dong K Y, Lu X Y, Gao B B, He B F. ACS Appl. Mater. Interfaces, 2022, 14(51): 56525.

doi: 10.1021/acsami.2c16277     URL    
[114]
Gu X X, Gao T T, Meng X P, Zhu Y, Wang G Y. Prog. Org. Coat., 2022, 162: 106561.
[115]
Chen S L, Li S Y, Ye Z P, Zhang Y F, Gao S D, Rong H, Zhang J H, Deng L D, Dong A J. Chem. Eng. J., 2022, 446: 136985.

doi: 10.1016/j.cej.2022.136985     URL    
[116]
Bayan R, Karak N. Composites Part A, 2018, 110: 142.

doi: 10.1016/j.compositesa.2018.04.024     URL    
[117]
Yang G W, He X T, Cheng S, Li X L, Yang S Z, Wei H B, Ding Y S. Appl. Surf. Sci., 2018, 456: 270.

doi: 10.1016/j.apsusc.2018.06.040     URL    
[118]
Fang W Y, Liu L B, Li T, Dang Z, Qiao C D, Xu J K, Wang Y Y. Chem. Eur. J., 2016, 22(3): 878.

doi: 10.1002/chem.v22.3     URL    
[119]
Liu C, Yin Q, Li X, Hao L F, Zhang W B, Bao Y, Ma J Z. Adv. Compos. Hybrid. Mater., 2021, 4(1): 138.

doi: 10.1007/s42114-021-00206-3    
[120]
Yao Y, Xu Z, Liu B, Xiao M, Yang J, Liu W. Adv. Funct. Mater., 2020, 31(4): 2006944.

doi: 10.1002/adfm.v31.4     URL    
[121]
Gao H, Xu J N, Liu S, Song Z Q, Zhou M, Liu S W, Li F, Li F H, Wang X D, Wang Z X, Zhang Q X. J. Colloid Interface Sci., 2021, 597: 393.

doi: 10.1016/j.jcis.2021.04.005     URL    
[122]
Pu W L, Fu D H, Wang Z H, Gan X P, Lu X L, Yang L, Xia H S. Adv. Sci., 2018, 5(5): 1800101.

doi: 10.1002/advs.v5.5     URL    
[123]
Xu K M, Chen G Q, Zhao M J, He W Y, Hu Q M, Pu Y. RSC Adv., 2022, 12(5): 2712.

doi: 10.1039/D1RA07083E     URL    
[124]
Yang Y, Ye Z S, Liu X X, Su J H. J. Mater. Chem. C, 2020, 8(15): 5280.

doi: 10.1039/D0TC00551G     URL    
[125]
Wen X, Xu J H, Wang H B, Du Z L, Wang S, Cheng X. Polym. Eng. Sci., 2022, 62(10): 3132.

doi: 10.1002/pen.v62.10     URL    
[126]
Xun X C, Zhang Z, Zhao X, Zhao B, Gao F F, Kang Z, Liao Q L, Zhang Y. ACS Nano, 2020, 14(7): 9066.

doi: 10.1021/acsnano.0c04158     URL    
[127]
Zhang E D, Shi J, Xiao L Q, Zhang Q, Lu M P, Nan B F, Wu K, Lu M G. Polym. Chem., 2021, 12(6): 831.

doi: 10.1039/D0PY01480J     URL    
[128]
Dong F H, Yang X X, Guo L Z, Qian Y H, Sun P H, Huang Z, Xu X, Liu H. J. Colloid Interface Sci., 2023, 631: 239.

doi: 10.1016/j.jcis.2022.11.045     URL    
[129]
Park S, Thangavel G, Parida K, Li S H, Lee P S. Adv. Mater., 2019, 31(1): 1805536.

doi: 10.1002/adma.v31.1     URL    
[130]
Lou Y, Liu H Z, Zhang J Y. Chem. Eng. J., 2020, 399: 125732.

doi: 10.1016/j.cej.2020.125732     URL    
[131]
(张广伟, 张来斌, 樊建春, 孙秉才, 齐立娟, 赵坤鹏, 张仁庆. 无损检测, 2013, 35(1): 56.
( Zhang G W, Zhang L B, Fan J C, Sun B C, Qi L J, Zhao S P, Zhang R Q. Nondestructive Testing, 2013, 35(1): 56.).
[132]
Zhou G P. Piezoelectrics Acoustooptics, 2010, 32(4):534.
(周国鹏. 压电与声光, 2010, 32(4):534.).
[133]
任越, 张钰民, 钟国舜, 宋言明, 孟凡勇. 激光与红外, 2020, 50(5): 598.
(Ren Y, Zhang Y M, Zhong G S, Song Y M, Meng F Y. Laser Infrared, 2020, 50(5): 598.).
[134]
Song H L, Luo G Q, Ji Z Y, Bo R H, Xue Z G, Yan D J, Zhang F, Bai K, Liu J X, Cheng X, Pang W B, Shen Z M, Zhang Y H. Sci. Adv., 2022, 8(11): eabm3785.

doi: 10.1126/sciadv.abm3785     URL    
[135]
Gao Z Y, Lou Z, Han W, Shen G Z. ACS Appl. Mater. Interfaces, 2020, 12(21): 24339.

doi: 10.1021/acsami.0c05119     URL    
[136]
Fan C J, Wen Z B, Xu Z Y, Xiao Y, Wu D, Yang K K, Wang Y Z. Macromolecules, 2020, 53(11): 4284.

doi: 10.1021/acs.macromol.0c00239     URL    
[137]
Tian Q, Yan W R, Li Y Q, Ho D. ACS Appl. Mater. Interfaces, 2020, 12(8): 9710.

doi: 10.1021/acsami.9b18873     URL    
[138]
Zhang L, Li H Q, Lai X J, Gao T Y, Zeng X R. ACS Appl. Mater. Interfaces, 2020, 12(39): 44360.

doi: 10.1021/acsami.0c13442     URL    
[1] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[2] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[3] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.