English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 78-86 DOI: 10.7536/PC200675 前一篇   后一篇

• 综述 •

基于各向异性表面的液滴驱动

薛銮栾1,2, 李会增1,*(), 李安1,2, 赵志鹏1,2, 宋延林1,2,*()   

  1. 1 中国科学院化学研究所 北京 100190
    2 中国科学院大学 北京 100049
  • 收稿日期:2020-06-25 修回日期:2020-07-07 出版日期:2021-01-24 发布日期:2020-09-23
  • 通讯作者: 李会增, 宋延林
  • 作者简介:
    * Corresponding author e-mail: (Huizeng Li); (Yanlin Song)
  • 基金资助:
    国家自然科学基金项目(51773206,); 国家自然科学基金项目(51903240); 博士后创新人才支持计划(BX20180313); 博士后基金面上项目(2018M641682)

Droplet Self-Propulsion Based on Heterogeneous Surfaces

Luanluan Xue1,2, Huizeng Li1,*(), An Li1,2, Zhipeng Zhao1,2, Yanlin Song1,2,*()   

  1. 1 Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-06-25 Revised:2020-07-07 Online:2021-01-24 Published:2020-09-23
  • Contact: Huizeng Li, Yanlin Song
  • Supported by:
    the National Natural Science Foundation of China(51773206,); the National Natural Science Foundation of China(51903240); the China Postdoctoral Innovative Talent Support Program(BX20180313); the China Postdoctoral Science Foundation(2018M641682)

驱动液滴实现各种动态行为在生物医学、微流控、痕量检测等领域具有重要应用。液滴的驱动主要依赖于对液滴不同位置受力的调节。具有浸润性差异或结构差异的各向异性表面,在对液滴进行驱动时具有操作简便、节约能源等优势,逐渐成为液滴操控领域的研究热点之一。本文结合本课题组的研究工作,对近年来利用各向异性表面驱动液滴的相关研究进行了综述。首先,分析了各向异性表面驱动液滴的基本原理。依据制备方法的不同,将各向异性表面分为浸润性各向异性表面、结构各向异性表面和协同各向异性表面三类,分别归纳了其常见制备方法和在液滴驱动领域的主要应用。最后,本文对各向异性表面驱动液滴的局限性和发展方向进行了总结和展望。

Actuating droplets for various dynamic behaviors has significant applications in the fields of biomedicine, microfluidics, and trace detection. The droplet movement depends on the adjustment of the forces on different positions of the droplets. Droplet self-propulsion based on heterogeneous surfaces shows advantages such as easy operation and energy conversation, which has been one of the research hotspots in droplet propulsion. In this article, recent research of droplet propulsion based on heterogeneous surfaces is reviewed. Firstly, the general principle of droplet self-propulsion based on surface heterogeneity is discussed. According to the different preparation methods, heterogeneous surfaces are divided into three categories: the heterogeneous wettability surface, the anisotropic structure surface and the synergistic surface. Their fabrications and applications are summarized, respectively. Finally, the limitations and the developments of heterogeneous surface are prospected and discussed.

Contents

1 Introduction

2 Droplet self-propulsion based on heterogeneous wettability

2.1 Gradient wettability

2.2 Patterned wettability

3 Droplet self-propulsion based on anisotropic structure

3.1 Static anisotropic structure

3.2 Dynamic anisotropic structure

4 Droplet self-propulsion based on synergetic effects

5 Conclusion and outlook

()
图1 表观接触角模型: (a) 杨氏方程;(b) Wenzel模型;(c) Cassie模型
Fig. 1 Apparent contact angle models. (a) Young’s equation;(b) Wenzel model; (c) Cassie model
图2 各向异性浸润性表面的驱动原理
Fig. 2 Principle of droplet self-propulsion based on heterogeneous wettability
图3 梯度浸润性驱动液滴: (a) 微观物理结构引起的浸润性梯度[32] ;(b) 化学性质引起的浸润性梯度[33]
Fig. 3 Droplet self-propulsion based on gradient wettability. (a) Gradient wettability induced by microstructures[32] ; (b) gradient wettability induced by chemical properties[33]
图4 利用结构及化学性质共同引起的梯度浸润性驱动液滴[34]
Fig. 4 Droplet self-propulsion based on gradient wettability induced by synergetic effects of microstructures and chemical properties[34]
图5 物理结构引起的图案化浸润性驱动液滴[35]
Fig. 5 Droplet self-propulsion based on patterned wettability induced by physical microstructures[35]
图6 化学性质引起的图案化浸润性驱动液滴。 (a) 通过选择性接枝制备的浸润性图案[37] ;(b) 通过选择性去接枝制备的浸润性图案[39]
Fig. 6 Droplet self-propulsion based on patterned wettability induced by chemical properties. (a) wettability patterned prepared by selective grafting[37] ; (b) wettability pattern prepared by selective degrafting[39]
图7 各向异性结构的驱动原理
Fig. 7 Principle of droplet self-propulsion based on anisotropic structures
图8 静态不对称结构驱动液滴。 (a) 仙人掌刺锥状结构[80] ;(b) 猪笼草凹槽结构[66] ;(c) 凸起块状结构[71]
Fig. 8 Droplet self-propulsion based on static anisotropic structures. (a) Conical structure mimicking cactus[80] ; (b) groove structure mimicking pitcher plants[66] ; (c) raised bump structure[71]
图9 动态不对称结构驱动液滴。 (a) 水鸟嘴周期性开合驱动液滴[70] ;(b) 磁响应管状结构[79]
Fig. 9 Droplet self-propulsion based on dynamic anisotropic structures. (a) Droplet movement driven by opening and closing of aquatic birds’ beak[70] ; (b) magnetic-responsive tubular structure[79]
图10 协同效应驱动液滴
Fig. 10 Principle of droplet self-propulsion based on synergetic effects
图11 协同效应驱动液滴: (a) 仿生仙人掌刺[68] ;(b) 仿生蜘蛛丝[86] ;(c) 具有刺激相应特性的仿生蜘蛛丝[87]
Fig. 11 Droplet self-propulsion based on synergetic effects. (a) Bioinspired cactus spine[68] ; (b) bioinspired spider silk[86] ; (c) stimuli-responsive spider silk[87]
[1]
Wang S, Wang T, Ge P, Xue P, Ye S, Chen H, Li Z, Zhang J, Yang B. Langmuir , 2015, 31: 4032.
[2]
Ni C , Jiang D , Xu Y L , Tang W L. Progress in Chemistry , 2020, 32( 5): 519.
倪陈, 姜迪, 徐幼林, 唐文来. 化学进展, 2020, 32( 5): 519.
[3]
Olceroglu E, McCarthy M. ACS Appl. Mater. Interfaces , 2016, 8: 5729.
[4]
Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D. Nature , 2015, 527: 82.
[5]
Xi H D, Zheng H, Guo W, Gañán-Calvo A M, Ai Y, Tsao C W, Zhou J, Li W, Huang Y, Nguyen N T. Lab Chip , 2017, 17: 751.
[6]
Kaminski T, Garstecki P. Chem. Soc. Rev., 2017, 46: 6210.
[7]
Irajizad P, Ray S, Farokhnia N, Hasnain M, Baldelli S, Ghasemi H. Adv. Mater. Interfaces , 2017, 4: 1700009.
[8]
Brochard F. Langmuir , 1989, 5: 432.
[9]
Li J, Ha N S, Liu T L, van Dam R M, Kim C. Nature , 2019, 572: 507.
[10]
Zhan Y Y , Liu Y Y , Lv J A , Zhao Y , Yu Y L. Progress in Chemistry , 2015, 27( 2/3): 157.
詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 化学进展, 2015, 27( 2/3): 157.
[11]
Ben S, Zhou T, Ma H, Yao J, Ning Y, Tian D, Liu K, Jiang L. Adv. Sci., 2019, 6: 1900834.
[12]
Wu L, Dong Z, Li N, Li F, Jiang L, Song Y. Small , 2015, 11: 4837.
[13]
Parker A R, Lawrence C R. Nature , 2001, 414: 33.
[14]
Bush J W, Hu D L. Annu. Rev. Fluid Mech., 2006, 38: 339.
[15]
Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. Nat. Commun., 2012, 3: 1247.
[16]
Zhao Y, Gu H, Xie Z, Shum H C, Wang B, Gu Z. J. Am. Chem. Soc., 2013, 135: 54.
[17]
Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, Gu Z, Zhao Y. Sci. Adv., 2017, 3: e1700004.
[18]
Cao M, Jin X, Peng Y, Yu C, Li K, Liu K, Jiang L. Adv. Mater., 2017, 29: 1606869.
[19]
Greenspan H P. J. Fluid Mech., 1978, 84: 125.
[20]
Chaudhury M K, Whitesides G M. Science , 1992, 256: 1539.
[21]
Young T. Philos. T. R. Soc., 1805, 95: 65.
[22]
De Gennes P-G, Brochard-Wyart F, QuÉrÉ D. Capillarity and Wetting Phenomena : Drops , Bubbles , Pearls , Waves . Springer Science & Business Media . 2013.
[23]
QuÉrÉ D. Physica A , 2002, 313: 32.
[24]
Wenzel R N. Ind. Eng. Chem., 1936, 28: 988.
[25]
Cassie A, Baxter S. Trans. Faraday Soc., 1944, 40: 546.
[26]
Zhang Y , Pi P H , Wen X F , Zheng D F , Cai Z Q , Cheng J. Progress in Chemistry , 2011, 23( 12): 2457.
张勇, 皮丕辉, 文秀芳, 郑大锋, 蔡智奇, 程江. 化学进展, 2011, 23( 12): 2457.
[27]
Li A, Li H, Li Z, Zhao Z, Li K, Li M, Song Y. Sci. Adv., 2020, 6: eaay5808.
[28]
Sommers A, Brest T, Eid K. Langmuir , 2013, 29: 12043.
[29]
QuÉrÉ D. Annu. Rev. Mater. Res., 2008, 38: 71.
[30]
Li J, Guo Z. Nanoscale , 2018, 10: 13814.

doi: 10.1039/C8NR04354J     URL    
[31]
Li J, Li J, Sun J, Feng S, Wang Z. Adv. Mater., 2019, 31: e1806501.
[32]
Liu C R, Sun J, Zhuang Y, Wei J, Li J, Dong L X, Yan D F, Hu A, Zhou X F, Wang Z K. Nanoscale , 2018, 10: 23164.
[33]
Feng S, Wang S, Gao L, Li G, Hou Y, Zheng Y. Angew. Chem. Int. Ed., 2014, 53: 6163.
[34]
Liu C, Sun J, Li J, Xiang C, Che L, Wang Z, Zhou X. Sci. Rep., 2017, 7: 7552.
[35]
Wang S, Li H L, Duan H, Cui Y T, Sun H, Zhang M J, Zheng X F, Song M R, Li H, Dong Z C, Ding H, Jiang L. J. Mater. Chem. A , 2020, 8: 7889.
[36]
Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K, Yao S, Wang Z. Nat. Phys., 2016, 12: 606.
[37]
Sun J, Bao B, Jiang J, He M, Zhang X, Song Y. RSC Adv., 2016, 6: 31470.
[38]
Zhao Z, Li H, Hu X, Li A, Cai Z, Huang Z, Su M, Li F, Li M, Song Y. Adv. Mater. Interfaces , 2019, 6: 1901033.
[39]
Li H, Fang W, Li Y, Yang Q, Li M, Li Q, Feng X Q, Song Y. Nat. Commun., 2019, 10: 950.
[40]
Kwon M H, Shin H S, Chu C N. Appl. Surf. Sci., 2014, 288: 222.
[41]
Jagdheesh R, García-Ballesteros J, Ocaña J. Appl. Surf. Sci., 2016, 374: 2.
[42]
Roach P, Shirtcliffe N J, Newton M I. Soft Matter , 2008, 4: 224.
[43]
Li G X, Liu Y, Wang B, Song X-M, Li E, Yan H. Appl. Surf. Sci., 2008, 254: 5299.
[44]
Li X M, Reinhoudt D, Crego-Calama M. Chem. Soc. Rev. , 2007, 36: 1350.
[45]
Terrill R H, Balss K M, Zhang Y, Bohn P W. J. Am. Chem. Soc. , 2000, 122: 988.
[46]
Lee S W, Laibinis P E. J. Am. Chem. Soc., 2000, 122: 5395.
[47]
Ito Y, Heydari M, Hashimoto A, Konno T, Hirasawa A, Hori S, Kurita K, Nakajima A. Langmuir , 2007, 23: 1845.
[48]
Hernandez S C, Bennett C J, Junkermeier C E, Tsoi S D, Bezares F J, Stine R, Robinson J T, Lock E H, Boris D R, Pate B D. ACS Nano , 2013, 7: 4746.
[49]
Xu Q F, Wang J N, Smith I H, Sanderson K D. Appl. Phys. Lett., 2008, 93: 233112.
[50]
Yang X, Liu X, Li J, Huang S, Song J, Xu W. Micro & Nano Lett. , 2015, 10: 343.
[51]
Bai H, Wang L, Ju J, Sun R, Zheng Y, Jiang L. Adv. Mater. , 2014, 26: 5025.
[52]
Hou Y, Yu M, Chen X, Wang Z, Yao S. ACS Nano , 2015, 9: 71.
[53]
Mishchenko L, Khan M, Aizenberg J, Hatton B D. Adv. Funct. Mater., 2013, 23: 4577.
[54]
Song D, Bhushan B. Philos. T. R. Soc. A , 2019, 377: 20180335.
[55]
Liu J, Guo H, Zhang B, Qiao S, Shao M, Zhang X, Feng X Q, Li Q, Song Y, Jiang L, Wang J. Angew. Chem. Int. Ed., 2016, 55: 4265.
[56]
Cho Y, Shim T S, Yang S. Adv. Mater., 2016, 28: 1433.
[57]
Berthier J. Micro-drops and Digital Microfluidics . William Andrew . 2012.
[58]
Wang X, Cai X, Guo Q, Zhang T, Kobe B, Yang J. Chem. Commun. , 2013, 49: 10064.
[59]
Song M, Liu Z, Ma Y, Dong Z, Wang Y, Jiang L. NPG Asia Mater., 2017, 9: e415.
[60]
Yong J, Chen F, Yang Q, Hou X. Soft Matter , 2015, 11: 8897.
[61]
Ma C, Bai S, Peng X, Meng Y. Appl. Surf. Sci., 2013, 284: 930.
[62]
Yong J, Yang Q, Chen F, Zhang D, Farooq U, Du G, Hou X. J. Mater. Chem. A , 2014, 2: 5499.
[63]
Florian C, Skoulas E, Puerto D, Mimidis A, Stratakis E, Solis J, Siegel J. ACS Appl. Mater. Interfaces , 2018, 10: 36564.
[64]
Geyer F L, Ueda E, Liebel U, Grau N, Levkin P A. Angew. Chem. Int. Ed., 2011, 50: 8424.
[65]
Liu C, Ju J, Zheng Y, Jiang L. ACS Nano , 2014, 8: 1321.
[66]
Li J, Zheng H, Yang Z, Wang Z. Commun. Phys., 2018, 1: 35.
[67]
Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L. Nature , 2016, 532: 85.
[68]
Ju J, Xiao K, Yao X, Bai H, Jiang L. Adv. Mater. , 2013, 25: 5937.
[69]
Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature , 2010, 463: 640.
[70]
Prakash M, QuÉrÉ D, Bush J W. Science , 2008, 320: 931.
[71]
Jiang J, Gao J, Zhang H, He W, Zhang J, Daniel D, Yao X. Proc. Natl. Acad. Sci. U. S. A. , 2019, 116: 2482.
[72]
Comanns P, Buchberger G, Buchsbaum A, Baumgartner R, Kogler A, Bauer S, Baumgartner W. J. R. Soc. Interface , 2015, 12: 20150415.
[73]
Wang Q, Yao X, Liu H, QuÉrÉ D, Jiang L. Proc. Natl. Acad. Sci. U. S. A. , 2015, 112: 9247.
[74]
Noblin X, Yang S, Dumais J. J. Exp. Biol., 2009, 212: 2835.
[75]
Cui Y, Li D, Bai H. Ind. Eng. Chem. Res., 2017, 56: 4887.
[76]
Lorenceau É, QuÉrÉ D. J. Fluid Mech., 2004, 510: 29.
[77]
Lagubeau G, Le Merrer M, Clanet C, QuÉrÉ D. Nat. Phys., 2011, 7: 395.
[78]
Lv J, Liu Y, Wei J, Chen E, Qin L, Yu Y. Nature , 2016, 537: 179.
[79]
Lei W, Hou G, Liu M, Rong Q, Xu Y, Tian Y, Jiang L. Sci. Adv., 2018, 4: eaau8767.
[80]
Lv C, Chen C, Chuang Y C, Tseng F G, Yin Y, Grey F, Zheng Q. Phys. Rev. Lett. , 2014, 113: 026101.
[81]
Li J, Zhou X, Li J, Che L, Yao J, McHale G, Chaudhury M K, Wang Z. Sci. Adv. , 2017, 3: eaao3530.
[82]
Shang L, Yu Y, Gao W, Wang Y, Qu L, Zhao Z, Chai R, Zhao Y. Adv. Funct. Mater., 2018, 28: 1705802.
[83]
Zhang X, Sun L, Wang Y, Bian F, Wang Y, Zhao Y. Proc. Natl. Acad. Sci. U. S. A. , 2019, 116: 20863.
[84]
Atencia J, Beebe D J. Nature , 2005, 437: 648.
[85]
Timonen J V, Latikka M, Leibler L, Ras R H, Ikkala O. Science , 2013, 341: 253.
[86]
Bai H, Ju J, Sun R, Chen Y, Zheng Y, Jiang L. Adv. Mater., 2011, 23: 3708.
[87]
Ju J, Zheng Y, Jiang L. Acc. Chem. Res., 2014, 47: 2342.
[88]
Wang D, Sun Q, Hokkanen M J, Zhang C, Lin F Y, Liu Q, Zhu S P, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras R H A, Deng X. Nature , 2020, 582: 55.
[89]
Sun L, Bian F, Wang Y, Wang Y, Zhang X, Zhao Y. Proc. Natl. Acad. Sci. U. S. A. , 2020, 117: 4527.
[90]
Xu W, Zheng H, Liu Y, Zhou X, Zhang C, Song Y, Deng X, Leung M, Yang Z, Xu R X, Wang Z L, Zeng X C, Wang Z. Nature , 2020, 578: 392.
[1] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[2] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.
[3] 斯芳芳, 张靓, 赵宁, 陈莉, 徐坚. 超亲水表面制备方法及其应用[J]. 化学进展, 2011, 23(9): 1831-1840.
[4] 朱英, 刘明杰, 万梅香, 江雷. 一维纳米纤维构筑的导电聚合物三维结构及其可控的浸润性[J]. 化学进展, 2011, 23(5): 819-828.
阅读次数
全文


摘要

基于各向异性表面的液滴驱动