English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 873-881 DOI: 10.7536/PC190928 前一篇   后一篇

• 综述 •

沸石的连续流动相合成

潘迪1, 刘鹏1, 张宏斌2, 唐颐1,**()   

  1. 1. 复旦大学化学系 上海 200433
    2. 复旦大学中华古籍保护研究院 上海 200433
  • 收稿日期:2019-09-23 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 唐颐
  • 基金资助:
    国家重点研发计划(2018YFA0209402)

Continuous Flow Synthesis of Zeolites

Di Pan1, Peng Liu1, Hongbin Zhang2, Yi Tang1,**()   

  1. 1. Department of Chemistry, Fudan University, Shanghai 200433, China
    2. Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
  • Received:2019-09-23 Online:2020-07-24 Published:2020-07-10
  • Contact: Yi Tang
  • About author:
  • Supported by:
    National Major Research and Development Plan(2018YFA0209402)

由于沸石分子筛在多个领域被广泛应用,高效可靠的沸石合成方法早已成为人们研究的重点。相较于传统高压釜水热间歇合成方法,沸石的连续流动相合成方法晶化时间短,时空产率高,是近年来发展的沸石合成新路线。利用连续流动反应器(CFR)的热延迟效应低、传质效果好和方法拓展性强等特点,可以在分钟级乃至秒级时间内实现高结晶度沸石合成,大大提升了合成效率和可控度。基于近期该领域的进展,本文介绍了沸石的连续流动反应器结构,其合成过程优势和产物特点及受限之处,并对其未来应用加以展望。

Due to the wide applications of zeolites in various fields, efficient and reliable synthesis of zeolite has become an important research issue. Compared with traditional high-pressure hydrothermal batch synthesis, continuous flow synthesis is one of the new methods for fast preparation of zeolite owing to its short crystallization time and high space-time yield. The high crystalline zeolites can be harvested in minute- and even second-level thanks to the specific characteristics of continuous flow reactors(CFR), such as low thermal lag, controllable mass transfer and good expansibility, which significantly enhance the synthesis efficiency and controllability. In this paper, based on the recent progress, the component of CFR equipment, the advantages and limitations of CFR for zeolite synthesis, and the future applications are introduced and prospected.

Contents

1 Introduction

2 Structure of CFR equipment

2.1 Feeding unit

2.2 Fluid channel

2.3 Heating unit

2.4 Cooling unit

2.5 Back pressure regulator

2.6 Monitor system

3 Features of synthesis process and product

3.1 Features of CFR reaction

3.2 The effective control of crystallization process

3.3 New progress of CFR techniques

4 Limitation of CFR application

4.1 Viscosity

4.2 Blockage

4.3 Crystal aggregation

5 Conclusion and prospect

()
图1 沸石合成的CFR体系组成框图
Fig.1 The scheme of CFR system for zeolite synthesis
图2 ZSM-5的(a)CFR快速合成装置示意图与其(b)温度随时间变化情况及(c)压力随时间变化情况[32]
Fig.2 (a) Scheme of the ultrafast CFR synthesis system of ZSM-5,(b) the system temperature changing with time and(c) the system pressure changing with time[32]. Copyright 2016, PNAS
图3 (a) 高压釜中各部位温度随时间变化,(b) CFR外部加热时温度随时间变化[37]
Fig.3 (a) The temperature at different positions in autoclaves changing with time and(b) the system temperature in CFR changing with time through external heating method[37]. Copyright 2016, Elsevier
表1 CFR系统中沸石结晶时间及相应条件
Table 1 The crystallization time of zeolites and the corresponding conditions in CFR systems
图4 (a) 传统合成与CFR快速合成ERI的29Si MASNMR谱图[39]以及(b) 传统合成与CFR快速合成ZSM-5的N2吸附-脱附曲线[32]
Fig.4 (a) The29Si MASNMR spectrogram of ERI zeolite synthesized by batch and CFR[39] and(b) the N2 adsorption-desorption curve of ZSM-5 zeolites synthesized by batch and CFR[32]. Copyright 2016, PNAS
图5 通过(a)微通道CFR与(d)高压釜合成得到的不同粒径分布的NaA沸石[28]
Fig.5 NaA zeolites with different diameter distribution synthesized from(a) microchannel CFR and(d) autoclave[28]. Copyright 2006, Elsevier
图6 NaA结晶反应速率随温度变化的阿雷尼乌斯方程理论曲线[37]
Fig.6 The theoretical crystallization rate curve of NaA calculated by Arrhenius equation[37]. Copyright 2016, Elsevier
图7 以(a)260 ℃与(b)300 ℃的高温超快合成ZSM-5时间与产品XRD谱图[32]
Fig.7 The XRD spectrogram of ZSM-5 product at different time during the ultrafast synthesis at high temperature of(a) 260 ℃ and (b) 300 ℃[32]. Copyright 2016, PNAS
图8 管路由于晶体聚集而堵塞[31]
Fig.8 The channel blocked by the aggregation of zeolite crystals[31]. Copyright 2013, Elsevier
图9 CFR超快合成的得到的(a)ZSM-5[32]与(d)ERI[39]黏连单晶与高压釜标准(b)ZSM-5与(c)ERI的TEM图
Fig.9 The TEM image of(a)ZSM-5[32] and(d)ERI[39]zeolite form CFR synthesis and TEM image of(b)ZSM-5 and(c)ERI zeolite from batch synthesis. Copyright 2016, PNAS
[1]
Davis M E , Nature, 2002,417:813. doi: 10.1038/nature00785 https://www.ncbi.nlm.nih.gov/pubmed/12075343

URL     pmid: 12075343
[2]
Herlihy M . Chem. Rev., 1999,99:635. doi: 10.1021/cr9600971 https://www.ncbi.nlm.nih.gov/pubmed/11749428

URL     pmid: 11749428
[3]
Lok B M , Messina C A , Patton R L , Gajek R T , Cannan T R , Flanigen E M . J. Am. Chem. Soc., 1984,106:6092. doi: 10.1021/ja00332a063 https://pubs.acs.org/doi/abs/10.1021/ja00332a063
[4]
Wilson S T , Lok B M , Messina C A , Cannan T R . Flanigen E M. ChemInform., 1982,13:1146.
[5]
Cundy C S , Cox P A . ChemInform., 2003,103:663.
[6]
Davis M E . Accounts Chem. Res., 1993,26:111.
[7]
Davis M E , Lobo R F . Chem. Mater., 1992,4:756.
[8]
Tosheva L , Valtchev V P . ChemInform., 2005,17:2494.
[9]
Kuhl, G, Micropor . Mesopor. Mater., 1998,22:515 doi: 10.1016/S1387-1811(98)00133-4 https://linkinghub.elsevier.com/retrieve/pii/S1387181198001334
[10]
Zaarour M , Dong B , Naydenova I , Retoux R , Mintova S . Micropor. Mesopor. Mater., 2014,189:11. doi: 10.1016/j.micromeso.2013.08.014 https://linkinghub.elsevier.com/retrieve/pii/S1387181113003909
[11]
Kim S D , Noh S H , Park J W , Kim W J . Micropor. Mesopor. Mater., 2006,92:181. doi: 10.1016/j.micromeso.2006.01.009 https://linkinghub.elsevier.com/retrieve/pii/S1387181106000175
[12]
Cundy C S , Cox P A . Micropor. Mesopor. Mater., 2005,82:1. doi: 10.1016/j.micromeso.2005.02.016 https://linkinghub.elsevier.com/retrieve/pii/S1387181105000934
[13]
Chen L H , Li X Y , Rooke J C , Zhang Y H , Yang X Y , Tang Y , Xiao F S , Su B L . J. Mater. Chem., 2012,22:17381. doi: 10.1039/c2jm31957h http://xlink.rsc.org/?DOI=c2jm31957h
[14]
Li J , Corma A , Yu J . Chem. Soc. Rev., 2015,44:7112. doi: 10.1039/c5cs00023h https://www.ncbi.nlm.nih.gov/pubmed/25740693

URL     pmid: 25740693
[15]
Bilecka I , Niederberger M . Nanoscale, 2010,2:1358. doi: 10.1039/b9nr00377k https://www.ncbi.nlm.nih.gov/pubmed/20845524

URL     pmid: 20845524
[16]
Du H , Min F , Xu W , Meng X , Pang W . J. Mater. Chem., 1997,7:551.
[17]
Somani O G , Choudhari A L , Rao B S , Mirajkar S P . Mater. Chem. Phys., 2003,82:538.
[18]
Cheng X , Mao J , Lv X , Hua T , Cheng X , Long Y , Tang Y . J. Mater. Chem. A, 2014,2:1247.
[19]
Koekkoek A J J , Degirmenci V , Hensen E J M . J. Mater. Chem., 2011,21:9279.
[20]
Zhang L , Huang Y . J. Mater. Chem. A, 2015,3:4522.
[21]
Zhang L , Yao J , Zeng C , Xu N . Chem. Commun., 2003,17:2244.
[22]
Mehla S , Da J , Jampaiah D , Periasamy S , Nafady A , Bhargava S K . Catal. Sci. Technol., 2019,9:3582. doi: 10.1039/C9CY00518H http://xlink.rsc.org/?DOI=C9CY00518H
[23]
Xue X , Zhou Z , Peng B , Zhu M M , Zhang Y J , Ren W , Ye Z G , Chen X , Liu M . RSC Adv., 2015,5:79249. doi: 10.1039/C5RA13349A http://xlink.rsc.org/?DOI=C5RA13349A
[24]
Aimable A , Muhr H , Gentric C , Bernard F , Le Cras F . Aymes D. Powder Technol., 2009,190:99.
[25]
Tonhauser C , Natalello A , Löwe H , Frey H . Macromolecules, 2012,45:9551.
[26]
Thome R , Schmidt H , Tissler A , Prescher D . EP 0402801, 1992.
[27]
Braun I , Schulz-Ekloff G , Wöhrle D , Lautenschläger W . Micropor. Mesopor. Mater., 1998,23:79.
[28]
Ju J , Zeng C , Zhang L , Xu N . Chem. Eng. J., 2006,116:115. doi: 10.1016/j.cej.2005.11.006 https://linkinghub.elsevier.com/retrieve/pii/S1385894705004249
[29]
Pan Y , Ju M , Yao J , Zhang L , Xu N . Chem. Commun.(Camb), 2009,7233.
[30]
Pan Y , Yao J , Zhang L , Xu N . Ind. Eng. Chem. Res., 2009,48:8471.
[31]
Yu L , Pan Y , Wang C , Zhang L . Chem. Eng. J., 2013,219:78.
[32]
Liu Z , Okabe K , Anand C , Yonezawa Y , Zhu J , Yamada H , Endo A , Yanaba Y , Yoshikawa T , Ohara K , Okubo T , Wakihara T . Proc. Natl. Acad. Sci. U. S. A., 2016,113:14267. doi: 10.1073/pnas.1615872113 https://www.ncbi.nlm.nih.gov/pubmed/27911823

URL     pmid: 27911823
[33]
Liu Z , Wakihara T , Nishioka D , Oshima K , Takewaki T , Okubo T . Chem. Mater., 2014,26:2327.
[34]
Liu Z , Wakihara T , Nomura N , Matsuo T , Anand C , Elangovan S P , Yanaba Y , Yoshikawa T , Okubo T . Chem. Mater., 2016,28:4840.
[35]
Liu Z , Wakihara T , Oshima K , Nishioka D , Hotta Y , Elangovan S P , Yanaba Y , Yoshikawa T , Chaikittisilp W , Matsuo T , Takewaki T , Okubo T . Angew. Chem. Int. Edit., 2015,54:5683. doi: 10.1002/anie.201501160 http://doi.wiley.com/10.1002/anie.201501160
[36]
Peng C , Liu Z , Okubo T , Wakihara T . Chem. Lett., 2018,47:654.
[37]
Vandermeersch T , Van Assche T R C , Denayer J F M , De Malsche W . Micropor. Mesopor. Mater., 2016,226:133.
[38]
Zhu J , Liu Z , Endo A , Yanaba Y , Yoshikawa T , Wakihara T , Okubo T . CrystEngComm., 2017,19:632.
[39]
Zhu J , Liu Z , Iyoki K , Anand C , Yoshida K , Sasaki Y , Sukenaga S , Ando M , Shibata H , Okubo T , Wakihara T . Chem. Commun.(Camb), 2017,53:6796.
[40]
Zhu J , Liu Z , Sukenaga S , Ando M , Shibata H , Okubo T , Wakihara T . Micropor. Mesopor. Mater., 2018,268:1.
[41]
Gunther A , Jensen K F . Lab. Chip., 2006,6:1487. doi: 10.1039/b609851g https://www.ncbi.nlm.nih.gov/pubmed/17203152

URL     pmid: 17203152
[42]
Yao X , Zhang Y , Du L , Liu J , Yao J . Renew. Sust. Energ. Rev., 2015,47:519.
[43]
Iwasaki T , Kawano N , Yoshida J I . Org. Process. Res. Dev., 2006,10:1126.
[44]
M M Helmkamp A , Davis M E . Annu. Rev. Mater. Res., 1995,25:161.
[45]
Berthier E , Dostie A M , Lee U N , Berthier J , Theberge A B . Anal. Chem., 2019,91:8739. doi: 10.1021/acs.analchem.9b01429 https://www.ncbi.nlm.nih.gov/pubmed/31260266

URL     pmid: 31260266
[46]
Luo G , Du L , Wang Y , Lu Y , Xu J . Particuology., 2011,9:545.
[47]
Park M B , Ahn S H , Ahn N H , Hong S B . Chem. Commun.(Camb), 2015,51:3671.
[48]
唐文来(Tang W L), 庞文琴(Pang W Q), 于吉红(Yu J H), 霍启升(Huo Q S), 陈接胜(Chen J S) . 分子筛与多孔材料化学 (Chemistry-Zeolites and Porous Materials). 北京:科学出版社 Beijing: Science Press), 2004. 219.
[49]
Price S , Rime B , Su W , Peters B , Christenson H , Hughes C , Sun C C , Veesler S , Pan H , Brandel C , Biscans B , Meekes H , Rosbottom I , Roth W J , Seton L , Taulelle F , Black S , Threlfall T , Vekilov P , Poornachary S , Diemand J , Toroz D , Salvalaglio M , Tipduangta P , Sefcik J , Booth S , Rasmuson A , Janbon S , Ter Horst J , Simone E , Hammond R , Bertran C A , Vetter T , Sear R , De Yoreo J , Harris K , Ristic R , Kavanagh A , Roberts K , Breynaert E , Myerson A , Coquerel G , Wu D , Colfen H , Cuppen H , Smets M , Wu D T . Faraday Discuss, 2015,179:503. doi: 10.1039/c5fd90039e https://www.ncbi.nlm.nih.gov/pubmed/26081969

URL     pmid: 26081969
[50]
Sun Q , Wang N , Bai R , Chen X , Yu J . J. Mater. Chem. A, 2016,4:14978.
[51]
Yu Q , Zhang Q , Liu J , Li C , Cui Q . CrystEngComm., 2013,15. doi: 10.1039/C3CE41322E https://www.ncbi.nlm.nih.gov/pubmed/24353476

URL     pmid: 24353476
[52]
Shah R K , Kim J W , Agresti J J , Weitz D A , Chu L Y . Soft. Matter., 2008,4. doi: 10.1039/b804611e https://www.ncbi.nlm.nih.gov/pubmed/19657472

URL     pmid: 19657472
[53]
Liu Z , Nomura N , Nishioka D , Hotta Y , Matsuo T , Oshima K , Yanaba Y , Yoshikawa T , Ohara K , Kohara S , Takewaki T , Okubo T , Wakihara T . Chem.Commun.(Camb), 2015,51:12567.
No related articles found!
阅读次数
全文


摘要

沸石的连续流动相合成