English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 604-616 DOI: 10.7536/PC190905 前一篇   后一篇

• 综述 •

液质联用中接口离子化新技术

田甜1, 张芳1,**(), 张曙盛1, 冯陈国1, 苏越2,**(), 林国强1,3   

  1. 1.上海中医药大学创新中药研究院手性药物研究中心 上海 201203
    2.上海中医药大学交叉科学研究院 中医方证与系统生物学研究中心 上海 201203
    3.中国科学院上海有机化学研究所 天然产物有机化学重点实验室 上海 200032
  • 收稿日期:2019-09-02 修回日期:2019-12-25 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 张芳, 苏越
  • 基金资助:
    国家自然科学基金项目(21672249)

New Ionization Technology for Interface of Liquid Chromatography-Mass Spectrometry

Tian Tian1, Fang Zhang1,**(), Shusheng Zhang1, Chenguo Feng1, Yue Su2,**(), Guoqiang Lin1,3   

  1. 1.The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
    2.Center for Chinese Medicine Therappy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
    3.Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2019-09-02 Revised:2019-12-25 Online:2020-05-15 Published:2020-02-20
  • Contact: Fang Zhang, Yue Su
  • About author:
    ** e-mail: (Fang Zhang);
  • Supported by:
    National Natural Science Foundation of China(21672249)

液相色谱-质谱联用(简称液质联用,LC-MS)将色谱的高分离效能与质谱强大的结构测定功能结合,不仅实现了对复杂混合物更准确的定性定量分析,而且简化了样品的前处理过程,使样品分析更简便,在药物分析、食品与环境分析以及生物样品检测等众多领域得到了广泛的应用。作为LC-MS的核心组成部分,液质接口的作用是将LC的液体引入,发生电离,并将生成的离子传输进MS。因此,接口离子化技术的改进直接影响了LC-MS的发展和应用。为了获得更高的灵敏度和更广泛的适用性,研究人员一直致力于离子化技术的研究,以促进分析物的解吸,提高其电离和传输效率,减少基质效应的干扰。本文针对近年来LC-MS接口离子化技术的改进和发展,从离子化原理出发,对接口离子源的构造、影响电离的因素、以及相关的应用进行综述,探讨其优缺点,并对LC-MS接口离子化技术的发展趋势进行了展望。

Liquid chromatography-mass spectrometry(LC-MS) combines the high separation efficiency of chromatography with the powerful structural determination of mass spectrometry, which not only enables more accurate analysis for the compounds, but also simplifies the pre-treatment of samples and makes the analysis more convenient. LC-MS, as an important tool for the qualitative and quantitative analysis of organic compounds, has been widely used in various fields such as pharmaceutical analysis, food and environmental monitoring, biological and medical research etc. As the key component of LC-MS, the role of the interface is to introduce and ionize the fractions from LC, and transfer the generated ions into the MS. Therefore, the improvement of ionization technology for the interface directly affects the advance and application of LC-MS. In order to obtain a higher sensitivity and a wider range of applicability, researchers have focused on the ionization technology to promote the desorption of chemicals, improve their ionization and transport efficiency, and reduce the interference of matrix effect. In this work, the development of traditional ionization technologies and the novel technologies reported for the interface of LC-MS in recent years are reviewed, including the ionization principle, interface construction, influencing factors, and the related applications. Their characteristics, advantages and disadvantages are discussed in details. Finally, the trend of ionization technology in development for the interface of LC-MS is prospected.

Contents

1 Introduction

2 Interface ionization technologies in LC-MS

2.1 Electrospray ionization-related techniques

2.2 Plasma-based ionization

2.3 Inlet ionization

2.4 Carbonfiber ionization

2.5 Capillary photoionization

2.6 Capillary vibrating sharp-edge spray ionization

2.7 Liquid electron ionization

2.8 Other ionization techniques

3 Conclusion and outlook

()
图1 微毛细管拉拔器制造的纳米进样喷针[5]
Fig. 1 Glass capillaries for the nESI source[5]
图2 2010~2019年LC-nESI MS的文献应用统计
Fig. 2 Literature statistics of LC-nESI MS in 2010~2019
图3 (a)SAESI实物图像;(b)SAESI示意图[4]
Fig. 3 (a) Photographic image of SAESI apparatus;(b) schematic of SAESI device[4]
图4 DART示意图[15]
Fig. 4 Schematic of DART device[15]
图5 (a)DBDI装置示意图;(b)LC-MS 中DBDI接口示意图[23]
Fig. 5 (a) Schematic of DBDI device;(b) schematic diagram of DBDI interface in LC-MS[23]
图6 (a)SAII装置示意图[31];(b)ESII装置示意图[37]
Fig. 6 (a) Schematic of SAII device[31];(b) schematic of ESII device[37]
图7 (a)CF发射器装置示意图[38];(b)CFI装置示意图[40]
Fig. 7 (a) Schematic of CF emitter[38];(b) schematic of CFI device[40]
图8 CPI装置示意图[45]
Fig. 8 Schematic of CPI device[45]
图9 cVSSI示意图
Fig. 9 Schematic of cVSSI device
图10 LEI装置示意图[54]
Fig. 10 Schematic of LEI device[54]
[1]
Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004,306(5695):471. https://www.sciencemag.org/lookup/doi/10.1126/science.1104404

doi: 10.1126/science.1104404     URL    
[2]
Hiraoka K, Nishidate K, Mori K, Asakawa D, Suzuki S. Rapid Commun. Mass Spectrom., 2007,21(18):3139. http://doi.wiley.com/10.1002/%28ISSN%291097-0231

doi: 10.1002/(ISSN)1097-0231     URL    
[3]
Wilm M S, Mann M. International J. Mass Spectrom., 1994,136(2/3):167. https://linkinghub.elsevier.com/retrieve/pii/0168117694040249

doi: 10.1016/0168-1176(94)04024-9     URL    
[4]
Zhang J T, Wang H Y, Zhu W, Cai T T, Guo Y L. Anal. Chem., 2014,86(18):8937. https://pubs.acs.org/doi/10.1021/ac502656a

doi: 10.1021/ac502656a     URL    
[5]
Wilm M, Mann M. Anal. Chem., 1996,68(1):1.
[6]
Schupke H, Hempel R, Eckardt R, Kronbach T. J. Mass Spectrom., 1996,31(12):1371. http://doi.wiley.com/10.1002/%28ISSN%291096-9888

doi: 10.1002/(ISSN)1096-9888     URL    
[7]
Mavroudakis L, Mavrakis E, Kouvarakis A, Pergantis S A. Rapid Commun. Mass Spectrom., 2017,31(11):911. http://doi.wiley.com/10.1002/rcm.7866

doi: 10.1002/rcm.7866     URL    
[8]
Wang T W, Nam P K S, Shi H L, Ma Y F. J. Chromatogra. Sci., 2007,45(4):200. https://academic.oup.com/chromsci/article-lookup/doi/10.1093/chromsci/45.4.200

doi: 10.1093/chromsci/45.4.200     URL    
[9]
Benijts T, Gunther W, Lambert W, De Leenheer A. Rapid Commun. Mass Spectrom., 2003,17(16):1866. http://doi.wiley.com/10.1002/rcm.1131

doi: 10.1002/rcm.1131     URL    
[10]
Huang Y, Zhang Q, Liu Y, Jiang B, Xie J, Gong T, Jia B, Liu X, Yao J, Cao W, Shen H, Yang P. Talanta, 2020,207:120340. https://linkinghub.elsevier.com/retrieve/pii/S0039914019309737

doi: 10.1016/j.talanta.2019.120340     URL    
[11]
Rahman M M, Wu D, Chingin K, Xu W, Chen H. Talanta, 2019,202:59. https://linkinghub.elsevier.com/retrieve/pii/S0039914019304412

doi: 10.1016/j.talanta.2019.04.052     URL    
[12]
Berg A, Svobodova1 H, Dewberry A, 王勇为(Wang Y W), Valaskovic G. 中国化学会第二届全国质谱分析学术报告会( The 2nd National Conference on Mass Spectrometry Analysis of Chinese Chemical Society), 2015.
[13]
Keating J E, Glish G L. Anal. Chem., 2018,90(15):9117. https://pubs.acs.org/doi/10.1021/acs.analchem.8b01528

doi: 10.1021/acs.analchem.8b01528     URL    
[14]
张骏婷(Zhang J T). 中国科学院上海有机化学研究所博士论文( Doctorial Dissertation of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences), 2016.
[15]
Cody R B, Laramee J A, Durst H D. Anal. Chem., 2005,77(8):2297. https://pubs.acs.org/doi/10.1021/ac050162j

doi: 10.1021/ac050162j     URL    
[16]
Na N, Zhao M X, Zhang S C, Yang C D, Zhang X R. J. Am. Soc. Mass Spectrome., 2007,18(10):1859. https://pubs.acs.org/doi/10.1021/jasms.8b02797

doi: 10.1016/j.jasms.2007.07.027     URL    
[17]
Harper J D, Charipar N A, Mulligan C C, Zhang X R, Cooks R G, Ouyang Z. Anal. Chem., 2008,80(23):9097. https://pubs.acs.org/doi/10.1021/ac801641a

doi: 10.1021/ac801641a     URL    
[18]
Badal S P, Michalak S D, Chan G C, You Y, Shelley J T. Anal. Chem., 2016,88(7):3494. https://pubs.acs.org/doi/10.1021/acs.analchem.5b03434

doi: 10.1021/acs.analchem.5b03434     URL    
[19]
Ratcliffe L V, Rutten F J M, Barrett D A, Whitmore T, Seymour D, Greenwood C, Aranda-Gonzalvo Y, Robinson S, McCoustra M. Anal. Chem., 2007,79(16):6094. https://pubs.acs.org/doi/10.1021/ac070109q

doi: 10.1021/ac070109q     URL    
[20]
Gross J H. Anal. Bioanal. Chem., 2014,406(1):63. http://link.springer.com/10.1007/s00216-013-7316-0

doi: 10.1007/s00216-013-7316-0     URL    
[21]
Chang C L, Xu G G, Bai Y, Zhang C S, Li X J, Li M, Liu Y, Liu H W. Anal. Chem., 2013,85(1):170. https://pubs.acs.org/doi/10.1021/ac303450v

doi: 10.1021/ac303450v     URL    
[22]
Chang C L, Zhou Z G, Yang Y Y, Han Y H, Bai Y, Zhao M P, Liu H W. Electrophoresis, 2012,33(22):3387. http://dx.doi.org/10.1002/elps.201200122

doi: 10.1002/elps.201200122     URL    
[23]
Hayen H, Michels A, Franzke J. Anal. Chem., 2009,81(24):10239. https://pubs.acs.org/doi/10.1021/ac902176k

doi: 10.1021/ac902176k     URL    
[24]
Gilbert-Lopez B, Lara-Ortega F J, Robles-Molina J, Brandt S, Schutz A, Moreno-Gonzalez D, Garcia-Reyes J F, Molina-Diaz A, Franzke J. Anal. Bioanal. Chem., 2019,41(19):4785.
[25]
Gilbert-Lopez B, Garcia-Reyes J F, Meyer C, Michels A, Franzke J, Molina-Diaz A, Hayen H. Analyst, 2012,137(22):5403. http://dx.doi.org/10.1039/c2an35705d

doi: 10.1039/c2an35705d     URL    
[26]
Covey T R, Thomson B A, Schneider B B. Mass Spectrom. Rev., 2009,28(6):870. http://doi.wiley.com/10.1002/mas.v28%3A6

doi: 10.1002/mas.v28:6     URL    
[27]
Page J S, Kelly R T, Tang K, Smith R D. J. Am. Soc. Mass Spectrom., 2007,18(9):1582. https://pubs.acs.org/doi/10.1021/jasms.8b03007

doi: 10.1016/j.jasms.2007.05.018     URL    
[28]
Kelly R T, Tolmachev A V, Page J S, Tang K, Smith R D. Mass Spectrom. Rev., 2010,29(2):294.
[29]
Trimpin S, Inutan E D, Herath T N, McEwen C N. Mol. Cell Proteomics, 2010,9(2):362. http://www.mcponline.org/lookup/doi/10.1074/mcp.M900527-MCP200

doi: 10.1074/mcp.M900527-MCP200     URL    
[30]
Trimpin S, Inutan E D, Herath T N, McEwen C N. Anal. Chem., 2010,82(1):11. https://pubs.acs.org/doi/10.1021/ac902066s

doi: 10.1021/ac902066s     URL    
[31]
Pagnotti V S, Inutan E D, Marshall D D, McEwen C N, Trimpin S. Anal. Chem., 2011,83(20):7591. https://pubs.acs.org/doi/10.1021/ac201982r

doi: 10.1021/ac201982r     URL    
[32]
Vestal M L. Mass Spectrom. Rev., 1983,2(4):447. http://doi.wiley.com/10.1002/%28ISSN%291098-2787

doi: 10.1002/(ISSN)1098-2787     URL    
[33]
Pagnotti V S, Chubatyi N D, McEwen C N. Anal. Chem., 2011,83(11):3981. https://pubs.acs.org/doi/10.1021/ac200556z

doi: 10.1021/ac200556z     URL    
[34]
Pagnotti V S, Chakrabarty S, Harron A F, McEwen C N. Anal. Chem., 2012,84(15):6828. https://pubs.acs.org/doi/10.1021/ac3014115

doi: 10.1021/ac3014115     URL    
[35]
Chubatyi N D, Pagnotti V S, Bentzley C M, McEwen C N. Rapid Commun. Mass Spectrom., 2012,26(8):887. http://doi.wiley.com/10.1002/rcm.6179

doi: 10.1002/rcm.6179     URL    
[36]
Wang B X, Inutan E D, Trimpin S. J. Am. Soc. Mass Spectrom., 2012,23(3):442. https://pubs.acs.org/doi/10.1021/jasms.8b04246

doi: 10.1007/s13361-011-0320-8     URL    
[37]
Fenner M A, Chakrabarty S, Wang B, Pagnotti V S, Hoang K, Trimpin S, McEwen C N. Anal. Chem., 2017,89(9):4798. https://pubs.acs.org/doi/10.1021/acs.analchem.6b05172

doi: 10.1021/acs.analchem.6b05172     URL    
[38]
Liu J, Ro K W, Busman M, Knapp D R. Anal. Chem., 2004,76(13):3599. https://pubs.acs.org/doi/10.1021/ac030419i

doi: 10.1021/ac030419i     URL    
[39]
Ro K W, Liu H, Busman M, Knapp D R. J. Chromatogra. A, 2004,1047(1):49. https://linkinghub.elsevier.com/retrieve/pii/S0021967304010878

doi: 10.1016/j.chroma.2004.06.115     URL    
[40]
Wu M X, Wang H Y, Zhang J T, Guo Y L. Anal. Chem., 2016,88(19):9547. https://pubs.acs.org/doi/10.1021/acs.analchem.6b02166

doi: 10.1021/acs.analchem.6b02166     URL    
[41]
Wu M L, Chen T Y, Chen Y C, Chen Y C. Anal. Chem., 2017,89(24):13458. https://pubs.acs.org/doi/10.1021/acs.analchem.7b03736

doi: 10.1021/acs.analchem.7b03736     URL    
[42]
吴梦茜(Wu M X). 中国科学院上海有机化学研究所博士论文( Doctorial Dissertation of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences), 2017.
[43]
Robb D B, Covey T R, Bruins A P. Anal. Chem., 2000,72(15):3653. https://pubs.acs.org/doi/10.1021/ac0001636

doi: 10.1021/ac0001636     URL    
[44]
Kersten H, Derpmann V, Barnes I, Brockmann K J, O’Brien R, Benter T. J. Am. Soc. Mass Spectrom., 2011,22(11):2070. https://pubs.acs.org/doi/10.1021/jasms.8b03917

doi: 10.1007/s13361-011-0212-y     URL    
[45]
Haapala M, Suominen T, Kostiainen R. Anal. Chem., 2013,85(12):5715. https://pubs.acs.org/doi/10.1021/ac4002673

doi: 10.1021/ac4002673     URL    
[46]
Poho P, Vaikkinen A, Haapala M, Kylli P, Kostiainen R. Analyst, 2019,144(9):2867. http://xlink.rsc.org/?DOI=C9AN00258H

doi: 10.1039/C9AN00258H     URL    
[47]
Li X J, Attanayake K, Valentine S J, Li P. Rapid Commun. Mass Spectrom., 2018.
[48]
Ranganathan N, Li C, Suder T, Karanji A K, Li X J, He Z Y, Valentine S J, Li P. J. Am. Soc. Mass Spectrom., 2019,30(5):824. https://doi.org/10.1007/s13361-019-02147-0

doi: 10.1007/s13361-019-02147-0     URL    
[49]
Heron S R, Wilson R, Shaffer S A, Goodlett D R, Cooper J M. Anal. Chem., 2010,82(10):3985. https://pubs.acs.org/doi/10.1021/ac100372c

doi: 10.1021/ac100372c     URL    
[50]
Amirav A, Granot O. J. Am. Soc. Mass Spectrom., 2000,11(6):587. https://pubs.acs.org/doi/10.1021/jasms.8b01488

doi: 10.1016/S1044-0305(00)00125-2     URL    
[51]
Cappiello A, Balogh M, Famiglini G, Mangani F, Palma P. Anal. Chem., 2000,72(16):3841. https://pubs.acs.org/doi/10.1021/ac991493x

doi: 10.1021/ac991493x     URL    
[52]
Cappiello A, Famiglini G, Mangani F, Palma P. Mass Spectrom. Rev., 2001,20(2):88. http://doi.wiley.com/10.1002/%28ISSN%291098-2787

doi: 10.1002/(ISSN)1098-2787     URL    
[53]
Tomasini D, Cacciola F, Rigano F, Sciarrone D, Donato P, Beccaria M, Caramao E B, Dugo P, Mondello L. Anal. Chem., 2014,86(22):11255. https://pubs.acs.org/doi/10.1021/ac5038957

doi: 10.1021/ac5038957     URL    
[54]
Termopoli V, Famiglini G, Palma P, Piergiovanni M, Cappiello A. Anal. Chem., 2017,89(3):2049. https://pubs.acs.org/doi/10.1021/acs.analchem.6b04646

doi: 10.1021/acs.analchem.6b04646     URL    
[55]
Cappiello A, Famiglini G, Palma P, Pierini E, Trufelli H, Maggi C, Manfra L, Mannozzi M. Chemosphere, 2007,69(4):554. https://linkinghub.elsevier.com/retrieve/pii/S0045653507003943

doi: 10.1016/j.chemosphere.2007.03.026     URL    
[56]
Cappiello A, Famiglini G, Palma P, Pierini E, Termopoli V, Trufelli H. Mass Spectrom. Rev., 2011,30(6):1242. http://dx.doi.org/10.1002/mas.20329

doi: 10.1002/mas.20329     URL    
[57]
Palma P, Famiglini G, Trufelli H, Pierini E, Termopoli V, Cappiello A. Anal. Bioanal. Chem., 2011,399(8):2683. http://link.springer.com/10.1007/s00216-010-4637-0

doi: 10.1007/s00216-010-4637-0     URL    
[58]
Cappiello A, Famiglini G, Termopoli V, Trufelli H, Zazzeroni R, Jacquoilleot S, Radici L, Saib O. Anal. Chem., 2011,83(22):8537. https://pubs.acs.org/doi/10.1021/ac201839x

doi: 10.1021/ac201839x     URL    
[59]
Trufelli H, Famiglini G, Termopoli V, Cappiello A. Anal. Bioanal. Chem., 2011,400(9):2933. http://link.springer.com/10.1007/s00216-011-4955-x

doi: 10.1007/s00216-011-4955-x     URL    
[60]
Cappiello A, Famiglini G, Palma P, Termopoli V, Trufelli H. J. Chromatogr. A, 2012,1255:286. http://dx.doi.org/10.1016/j.chroma.2011.12.068

doi: 10.1016/j.chroma.2011.12.068     URL    
[61]
Cappiello A, Tirillini B, Famiglini G, Trufelli H, Termopoli V, Flender C. Phytochem. Anal., 2012,23(3):191. http://doi.wiley.com/10.1002/pca.v23.3

doi: 10.1002/pca.v23.3     URL    
[62]
Famiglini G, Termopoli V, Palma P, Capriotti F, Cappiello A. Electrophoresis, 2014,35(9):1339. http://onlinelibrary.wiley.com/doi/10.1002/elps.201300462/abstract

doi: 10.1002/elps.201300462     URL    
[63]
Termopoli V, Famiglini G, Palma P, Piergiovanni M, Rocio-Bautista P, Ottaviani M F, Cappiello A, Saeed M, Perry S. J. Chromatogr. A, 2019,1591:120. https://linkinghub.elsevier.com/retrieve/pii/S0021967319300494

doi: 10.1016/j.chroma.2019.01.034     URL    
[64]
Popov R S, Ivanchina N V, Kicha A A, Malyarenko T V, Dmitrenok P S. J. Am. Soc. Mass Spectrom., 2019,30(5):743. https://doi.org/10.1007/s13361-019-02136-3

doi: 10.1007/s13361-019-02136-3     URL    
[65]
Cheng H Y, Zhang W W, Wang Y C, Liu J H. J. Chromatogr. A, 2018,1575:59. https://linkinghub.elsevier.com/retrieve/pii/S0021967318311749

doi: 10.1016/j.chroma.2018.09.023     URL    
[66]
Dahal U P, Jones J P, Davis J A, Rock D A. Drug MeTab. Dispos., 2011,39(12):2355. http://dx.doi.org/10.1124/dmd.111.040865

doi: 10.1124/dmd.111.040865     URL    
[67]
Rappel C, Schaumloffel D. J. Anal. At. Spectrom., 2010,25(12):1963. http://xlink.rsc.org/?DOI=c0ja00050g

doi: 10.1039/c0ja00050g     URL    
[68]
Giusti P, Lobinski R, Szpunar J, Schaumloffel D. Anal. Chem., 2006,78(3):965. https://pubs.acs.org/doi/10.1021/ac051656j

doi: 10.1021/ac051656j     URL    
[69]
Shen L H, Sun J N, Cheng H Y, Liu J H, Xu Z G, Mu J X. J. Anal. At. Spectrom., 2015,30(9):1927. http://xlink.rsc.org/?DOI=C5JA00198F

doi: 10.1039/C5JA00198F     URL    
[70]
Zhou Y M, Zhang N, Li Y F, Xiong C Q, Chen S M, Chen Y T, Nie Z X. Analyst, 2014,139(21):5387. http://dx.doi.org/10.1039/c4an00979g

doi: 10.1039/c4an00979g     URL    
[71]
Ai W P, Nie H G, Song S Y, Liu X Y, Bai Y, Liu H W. J. Am. Soc. Mass Spectrom., 2018,29(7):1408. https://doi.org/10.1007/s13361-018-1949-3

doi: 10.1007/s13361-018-1949-3     URL    
[1] 李瑜玲, 赵君博, 郭寅龙. 常压电喷雾离子化的机理及应用[J]. 化学进展, 2019, 31(1): 94-109.
[2] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[3] 张佳玲, 霍飞凤, 周志贵, 白玉, 刘虎威. 实时直接分析质谱的原理及应用[J]. 化学进展, 2012, 24(01): 101-109.
[4] 薛震,邱波,林广欣,赖丛芳,罗海. 解吸电喷雾电离技术*[J]. 化学进展, 2008, 20(04): 594-601.
阅读次数
全文


摘要

液质联用中接口离子化新技术