English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1815-1821 DOI: 10.7536/PC150541 前一篇   后一篇

• 综述与评论 •

聚丙烯釜内合金的相态研究

郭艳3, 彭波1*, 张春雨2*, 张学全2   

  1. 1. 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 13002;
    2. 中国科学院长春应用化学研究所 中国科学院合成橡胶重点实验室 长春 130022;
    3. 南京大学现代工程与应用科学学院 南京 210093
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 彭波, 张春雨 E-mail:pengbo@ciac.ac.cn;cyzhang@ciac.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.51303169,21404106)和石油化工联合基金(No.U1462124)资助

Morphology of Polypropylene in-Reactor Alloys

Guo Yan3, Peng Bo1*, Zhang Chunyu2*, Zhang Xuequan2   

  1. 1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13002;
    2. Key Laboratory of Synthetic Rubber Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
    3. College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51303169, 21404106) and the Petrochemical Joint Fund(No. U1462124).
聚丙烯釜内合金具有良好的刚韧平衡性能,历经30多年的发展,在包装、汽车和建筑等领域已得到广泛的应用。其优异的性能及复杂的多相、多组分结构更是引起了相关领域研究者的高度关注。聚丙烯釜内合金是一种在聚合釜内直接合成的多相、多组分聚合物体系,其初始产品常以粉末或球型颗粒的状态存在,具有非常复杂的相形态,并且在加工成型过程中,由于相形态的演变会形成更加丰富的微结构,从而对聚丙烯釜内合金最终的力学性能产生决定性的影响。目前对于聚丙烯釜内合金体系的分子链结构-聚集态结构-产品性能之间的构效关系仍然有很多问题亟待解决。近期研究表明在某些情况下,聚丙烯釜内合金体系中增韧相形成“核-壳”型结构(或多重“核-壳”型结构)时,可以实现最佳的刚性与韧性的平衡,但对于这些“核-壳”结构形成条件的控制及结构成分的精确测定仍有不足。本文主要总结了近年来聚丙烯釜内合金相态研究的进展,展望了该领域可能的发展方向。
Over the past three decades, polypropylene in-reactor alloys have been widely used in various fields such as packaging, automotive and construction due to their excellent mechanical properties and good impact resistance. These excellent properties are derived from their complicated compositions and phase structures, which have attracted significant research interest in recent years. Polypropylene in-reactor alloy is a multicomponent system containing PP homopolymer, ethylene-propylene random copolymer (EPR) and ethylene-propylene block copolymers with different sequence lengths (EbP). These complex components form multiphase in the polypropylene in-reactor products. The original products are in the forms of powers or particles and have complicated morphology. After the processing, polypropylene in-reactor alloys will form abundance microstructures which have crucial influence on the impact strength of the final product. However, the relationship between molecular structures, morphology and properties of the product are still not well understood. For example, it was found that the formation of core-shell structure lead to the best balance of rigidity and toughness. However, studies on the formation condition and the composition of the core-shell structure are still limited. In the present review, we aim to highlight the recent progress in the studies on the morphology of polypropylene in-reactor alloys, and the prospective tendency of this field is proposed.

Contents
1 Introduction
2 Synthesis and composition of polypropylene in-reactor alloys
3 Morphology of polypropylene in-reactor alloys
3.1 Morphology of the polypropylene in-reactor alloys original particles
3.2 Influence of thermal treatment and processing on the morphology of the polypropylene in-reactor alloys
3.3 Core-shell structure of the polypropylene in-reactor alloys
4 Summary and outlook

中图分类号: 

()
[1] 洪定一(Hong D Y). 聚丙烯——原理、工艺与技术(Polypropylene:Principle, Processes and Technology),北京:中国石化出版社有限公司(Beijing: China Petrochemical Press Co. LTD), 2011.
[2] Galli P, Vecellio G. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(3): 396.
[3] 王红英(Wang H Y), 胡徐腾(Hu X T), 李振宇(Li Z Y), 义建军(Yi J J), 董金勇(Dong J Y). 化学进展(Progress in Chemistry), 2007, 19(6): 932.
[4] Li R B, Zhang X Q, Zhao Y, Hu X T, Zhao X T, Wang D J. Polymer, 2009, 50(21): 5124.
[5] Kock C, Aust N, Grein C, Gahleitner M. J. Appl. Polym. Sci., 2013, 130(1): 287.
[6] Galli P, Vecellio G. Prog. Polym. Sci., 2001, 26(8): 1287.
[7] Hayashi K, Morioka T, Toki S. J. Appl. Polym. Sci., 1993, 48(3): 411.
[8] Liu Y M, Xu J T, Fu Z S, Fan Z Q. J. Appl. Polym. Sci., 2013, 127(2): 1346.
[9] Vestberg T, Denifl P, Wilen C E. J. Polym. Sci. Pol. Chem., 2013, 51(9): 2040.
[10] Zacca J J, Debling J A, Ray W H. Chem. Eng. Sci., 1996, 51(21): 4859.
[11] Debling J A, Zacca J J, Ray W H. Chem. Eng. Sci., 1997, 52(12): 1969.
[12] Zacca J J, Debling J A, Ray W H. Chem. Eng. Sci., 1997, 52(12): 1941.
[13] 罗华林(Luo H L), 张春波(Zhang C B), 牛慧(Niu H), 赵莹(Zhao Y), 董金勇(Dong J Y), 吴瑾光(Wu J G), 王笃金(Wang D J). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2013, 33(2): 418.
[14] Xu J T, Jin W, Fu Z S, Fan Z Q. J. Appl. Polym. Sci., 2005, 98(1): 243.
[15] Cai H J, Luo X L, Chen X X, Ma D Z, Wang J M, Tan H S. Appl. Polym. Sci., 1999, 71(1): 103.
[16] Cai H J, Luo X L, Ma D Z, Wang J M, Tan H S. J. Appl. Polym. Sci., 1999, 71(1): 93.
[17] Xu J, Fu Z, Fan Z, Feng L. Eur. Polym. J., 2002, 38(9): 1739.
[18] amli T, Tuncel M, Çenel S, Tuncel A. J. Appl. Polym. Sci., 2002, 84(2): 414.
[19] Tan H, Li L, Chen Z, Song Y, Zheng Q. Polymer, 2005, 46(10): 3522.
[20] Pires M, Mauler R S, Liberman S A. J. Appl. Polym. Sci., 2004, 92(4): 2155.
[21] Pegoraro M, Severini F, Di Landro L, Braglia R, Kolarik J. Macromol. Mater. Eng., 2000, 280/281(1): 14.
[22] Chen Y, Chen Y, Chen W, Yang D. J. Appl. Polym. Sci., 2008, 108(4): 2379.
[23] Tong C Y, Lan Y, Chen Y, Chen Y, Yang D C, Yang X N. J. Appl. Polym. Sci., 2012, 123(3): 1302.
[24] Cheruthazhekatt S, Pijpers T F J, Mathot V B F, Pasch H. Anal. Bioanal. Chem., 2013, 405(28): 8995.
[25] Cheruthazhekatt S, Pijpers T F J, Harding G W, Mathot V B F, Pasch H. Macromolecules, 2012, 45(4): 2025.
[26] Zhu H J, Monrabal B, Han C C, Wang D J. Macromolecules, 2008, 41(3): 826.
[27] Shang-Guan Y G, Chen F, Zheng Q. Sci. China-Chem., 2012, 55(5): 698.
[28] Kock C, Gahleitner M, Schausberger A, Ingolic E. J. Appl. Polym. Sci., 2013, 128(3): 1484.
[29] Jiang W, An L J, Jiang B Z. Polymer, 2001, 42(10): 4777.
[30] Zhang Y Q, Fan Z Q, Feng L X. J. Appl. Polym. Sci., 2002, 84(2): 445.
[31] Rungswang W, Saendee P, Thitisuk B, Pathaweeisariyakul T, Cheevasrirungruang W. J. Appl. Polym. Sci., 2013, 128(5): 3131.
[32] Ito J-I, Mitani K, Mizutani Y. J. Appl. Polym. Sci., 1992, 46(7): 1221.
[33] Chen Y, Chen Y, Chen W, Yang D. Polymer, 2006, 47(19): 6808.
[34] Zhu H J, Yang H R, Zhao Y, Wang D J. J. Appl. Polym. Sci., 2011, 121(3): 1372.
[35] Zhu H J, Graf R, Hou G J, Zhao Y, Wang D J, Spiess H W. Macromol. Chem. Phys., 2010, 211(10): 1157.
[36] Bukatov G D, Zaikovskii V I, Zakharov V A, Kryukova G N, Fenelonov V B, Zagrafskaya R V. Polym. Sci. U.S.S.R., 1982, 24(3): 599.
[37] Skomorokhov V B, Zakharov V A, Kirillov V A, Bukatov G D. Polym. Sci. U.S.S.R., 1989, 31(6): 1420.
[38] Noristi L, Marchetti E, Baruzzi G, Sgarzi P. J. Polym. Sci., Part A: Polym. Chem., 1994, 32(16): 3047.
[39] Kakugo M, Sadatoshi H, Sakai J, Yokoyama M. Macromolecules, 1989, 22(7): 3172.
[40] Cecchin G, Marchetti E, Baruzzi G. Macromol. Chem. Phys., 2001, 202(10): 1987.
[41] Kissin Y V, Rishina L A. Polym. Sci. Ser. A, 2008, 50(11): 1101.
[42] Chen Y, Chen Y, Chen W, Yang D. Eur. Polym. J., 2007, 43(7): 2999.
[43] Zhou Y, Niu H, Kong L, Zhao Y, Dong J Y, Wang D. Polymer, 2009, 50(19): 4690.
[44] Luo F, Xu C, Wang K, Deng H, Chen F, Fu Q. Polymer, 2012, 53(8): 1783.
[45] Hashimoto T. Phase Transit., 1988, 12(1): 47.
[46] Chen R, Shangguan Y, Zhang C, Chen F, Harkin-Jones E, Zheng Q. Polymer, 2011, 52(13): 2956.
[47] Song S J, Wu P Y, Feng J C, Ye M X, Yang Y L. Polymer, 2009, 50(1): 286.
[48] Song S J, Feng J C, Wu P Y, Yang Y L. Macromolecules, 2009, 42(18): 7067.
[49] Song S J, Feng J C, Wu P Y. Polymer, 2010, 51(22): 5267.
[50] Kim G M, Michler G H. Polymer, 1998, 39(23): 5689.
[51] Kim G M, Michler G H. Polymer, 1998, 39(23): 5699.
[52] 刘宏治(Liu H Z), 杨桂生(Yang J S), 欧玉春(Ou Y C), 王笃金(Wang D J). 高分子通报(Polymer Bulletin), 2006, (9): 1.
[53] Doshev P, Lohse G, Henning S, Krumova M, Heuvelsland A, Michler G, Radusch H J. J. Appl. Polym. Sci., 2006, 101(5): 2825.
[54] Zhang C, Shangguan Y, Chen R, Wu Y, Chen F, Zheng Q, Hu G. Polymer, 2010, 51(21): 4969.
[55] Smolna K, Gregor T, Kosek J. Eur. Polym. J., 2013, 49(12): 3966.
[56] Urdampilleta I, González A, Iruin J J, de la Cal J C, Asua J M. Macromolecules, 2005, 38(7): 2795.
[57] Tan H S, Yu Y Z, Zhao L Y, Sun H Q. Polym.-Plast Technol., 2012, 51(1): 71.
[58] Dazzi A, Prater C B, Hu Q C, Chase D B, Rabolt J F, Marcott C. Appl. Spectrosc., 2012, 66(12): 1365.
[1] 刘旭, 吴俊涛, 霍江贝, 孟晓宇, 崔立山, 周琼. 质子交换膜的传输通道微观结构对燃料电池性能的影响[J]. 化学进展, 2015, 27(4): 395-403.
[2] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
[3] 赵巧玲, 马志*. 原子力显微镜在聚烯烃研究中的应用[J]. 化学进展, 2012, (10): 2011-2018.
[4] 董焕丽, 胡文平. 共轭聚合物材料的有序化,结晶化及器件应用研究[J]. 化学进展, 2011, 23(6): 1041-1049.
[5] 李俊君,陈强,李刚,赵建龙,朱自强. 微流控技术应用于蛋白质结晶的研究*[J]. 化学进展, 2009, 21(05): 1034-1039.
[6] 时静雅,武培怡. 傅立叶变换红外光谱技术在超临界CO2作用聚合物体系中的应用[J]. 化学进展, 2009, 21(05): 1023-1033.
[7] 钱立军,支俊格,佟斌,杨帆,赵玮,董宇平. 具有聚集诱导发光性质的化合物*[J]. 化学进展, 2008, 20(05): 673-678.
[8] 李强,辜敏,鲜晓红. 铜电结晶的研究进展*[J]. 化学进展, 2008, 20(04): 483-490.
[9] 赵卫光,李正名,王宝雷,王建国. 高通量蛋白质结晶及其在药物设计中的应用*[J]. 化学进展, 2004, 16(01): 105-.
[10] 李洁,陈启元,尹周澜,张平民. 过饱和铝酸钠溶液结构性质与分解机理研究现状*[J]. 化学进展, 2003, 15(03): 170-.
阅读次数
全文


摘要

聚丙烯釜内合金的相态研究