English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 609-625 DOI: 10.7536/PC130843 前一篇   后一篇

• 综述与评论 •

染料敏化太阳电池钌系敏化剂

孙花飞, 泮廷廷, 胡桂祺, 孙元伟, 王东亭, 张宪玺*   

  1. 聊城大学化学化工学院 山东省化学储能与新型电池技术重点实验室 聊城 252000
  • 收稿日期:2013-08-01 修回日期:2013-11-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 张宪玺,e-mail:zhangxianxi@lcu.edu.cn E-mail:zhangxianxi@lcu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2011CBA00701)、国家自然科学基金项目( No. 21171084 )、教育部留学回国人员科研启动基金项目、山东省高校优秀科研创新团队项目和泰山学者研究基金资助

Ruthenium Sensitizers for Dye-Sensitized Solar Cells

Sun Huafei, Pan Tingting, Hu Guiqi, Sun Yuanwei, Wang Dongting, Zhang Xianxi*   

  1. Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
  • Received:2013-08-01 Revised:2013-11-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    The work was supported by the National Basic Research Program of China (973 Program)(No. 2011CBA00701), National Natural Science Foundation of China (No. 21171084), the Returned Overseas Researcher Foundation from the Ministry of Education, the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province, and Taishan Scholar Research Fund

钌系敏化剂是染料敏化太阳电池(DSSC)研究最早也最成功的敏化剂类型之一,最高光电转换效率已达到11%以上。研究总结钌系敏化剂的结构、谱学性质、电化学性质与其光电转换性能之间的构效关系,对于设计合成新的具有更高性能的敏化剂、推进DSSC的实用化进程具有十分重要的意义。本文综述了钌系敏化剂的研究进展,将这类敏化剂按结构和性质进行分类,讨论了其分子结构、电子结构、谱学性质、电化学性质对其光吸收能力、电子注入效能、电荷传输与复合等因素的影响,并对其光电转换性能进行了详细评述,总结了其结构与光电转换性能之间的构效关系,概括了高效钌系敏化剂的结构特征,为更高效敏化剂的设计合成提供了有价值的参考。

Dye-sensitized solar cell (DSSC) is one of the major development trends of solar cells due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs using ruthenium complexes as sensitizers have achieved the highest photo-to-electric conversion efficiencies over 11% with very good stability, implying potential practical applications. It is very important to study the structure-performance-relationships between the structures and the photo-to-electric conversion performances. In this paper, we review the recent research progress of the ruthenium sensitizers. The sensitizers are divided into several groups according to the various substituent groups attached to the bipyridine ring and the numbers of the —NCS ligand. The relationships between the structures, the spectroscopic properties, the electron injection efficiency, the electron transfer and recombination are discussed. The structure characters of the high efficiency sensitizers are summarized, which provides valuable information for design and screening of better sensitizers. Furthermore, special attention has been paid to the design principles of these dyes. Co-sensitization, an emerging technique to extend the absorption range, is also discussed as a choice to improve the performance of the solar cell devices. The working principle of the DSSC is also discussed in detail.

Contents
1 Introduction
1.1 The structure and working principle of DSSC
1.2 Sensitizers
2 Ruthenium sensitizer
2.1 N3, N719, Black dye and HIS-2
2.2 Amphiphilic ruthenium photosensitizers
2.3 Highly molar extinction and stability bipyridyl ruthenium dye
2.4 The ruthenium sensitizers containing a -NCS
2.5 The ruthenium sensitizers modifying the carboxyl bipyridyl side
2.6 The ruthenium sensitizers without -NCS
2.7 The ruthenium sensitizers containing hole transporting units
2.8 The ruthenium sensitizers containing phenanthroline or quinoline ligands
2.9 Sensitizers with novel anchoring groups
3 Conclusion

中图分类号: 

()

[1] Chapin D M, Fuller C S, Pearson G L. J. Appl. Phys., 1954, 25: 676.
[2] Green M A, Emery K, Hishikawa Y, Warta W. Prog. Photovoltaics, 2009, 17: 85.
[3] O'Regan B, Grätzel M. Nature, 1991, 353: 737.
[4] Bonaccorso F. Int. J. Photoenergy, 2010, 727134: 1.
[5] Caramori S, Cristino V, Boaretto R, R Argazzi, Bignozzi C A, Carlo A D. Int. J. Photoenergy, 2010, 458614: 1.
[6] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev., 2010, 110: 6595.
[7] Nazeeruddin M K, Barano E, Grätzel M. Sol. Energy, 2011, 85: 1172.
[8] Singh S P, Islam A, Yanagida M, Han L. Int. J. Photoenergy, 2011, 520848: 1.
[9] Islam A, Singh S P, Han L. Funct. Mater. Lett., 2011, 4: 21.
[10] Islam A, Singh S P, Yanagida M, Karim M R, Han L. Int. J. Photoenergy, 2011, 757421: 1.
[11] Johansson P, Rowley J, Taheri A, Johansson P G, Rowley J, Taheri A, Meyer G J, Singh S P, Islam A, Han L. Langmuir, 2011, 27: 14522.
[12] Islam A, S Singh P, Han L. Int. J. Photoenergy, 2011, 204639: 1.
[13] Akhtaruzzaman M, Islam A, Fan Y Akhtaruzzaman M, Islam A, Yang F, Asao N, Kwon E, Singh S P, Han L, Yamamoto Y. Chem. Commun., 2011, 47: 12400.
[14] Yella A, Lee HW, Tsao H N, Chen Y Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Science, 2011, 334: 629.
[15] Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M. J. Am. Chem. Soc., 1993, 115: 6382.
[16] Nazeeruddin M K, Angelis F D, Fantacci S, Selloni A, ViscardiG, Liska P, Ito S, Takeru B, Grätzel M. J. Am. Chem. Soc., 2005, 127: 16835.
[17] Chen C Y, Wang M k, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J D, Tsai J H, Grätzel C, Wu C G, Zakeeruddin S M, Grätzel M. ACS. Nano., 2009, 3: 3103.
[18] Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi CA, Grätzel M. J. Am. Chem. Soc., 2001, 123: 1613.
[19] Numata Y, Singh S P, Islam A, Imai M I A, Nozaki K, Han L Y. Adv. Funct. Mater., 2013, 23: 1817.
[20] Wang P, Zakeeruddin S M, Baker R K, Moser J E, Grätzel M. Adv. Mater., 2003, 15: 2101.
[21] Lagref J J, Nazeeruddin M K, Grätzel M. Synth. Met., 2003, 138: 333.
[22] Kong F T, Dai S Y, Wang K J. Chin. J. Chem., 2007, 25: 168.
[23] Kawano R, Nazeeruddin M K, Sato A, Grätzel M, Watanabe M. Electrochem. Commun., 2007, 9: 1134.
[24] Klein C, Nazeeruddin M K, Liska P, Censo D D, Hirata N, Palomares E, Durrant J R, Grätzel M. Inorg. Chem., 2005, 44: 178.
[25] Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Grätzel M. J. Am. Chem. Soc., 2005, 127: 808.
[26] Kuang D, Ito S, Wenger Be, Klein C, Moser J E, Humphry-Baker R, Zakeeruddin S M, Grätzel M. J. Am. Chem. Soc., 2006, 128: 4146.
[27] Giribabu L, Kumar C. V, Rao C S, Reddy V G, Reddy P Y, Chandrasekharama M, Soujanya Y. Energy Environ. Sci., 2009, 2: 770.
[28] Wang P, Zakeeruddin S M, Moser J E. J. Adv. Mater., 2004, 16: 1806.
[29] Gao F F, Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Baker R H, Wang P, Zakeeruddin S M, Grätzel M. J. Am. Chem. Soc., 2008, 130: 10720.
[30] Yu Q J, Liu S, Zhang M, Cai N, Wang Y, Wang P. J. Phys. Chem. C, 2009, 113: 14559.
[31] Gao F F, Wang Y, Zhang J, Shi D, Wang M K, Humphry-Baker R H, Wang P, Zakeeruddin S M, Grätzel M. Chem. Commun., 2008, 2635.
[32] Gao F F, Cheng Y M, Yu Q J, Liu S, Shi D, Li Y H, Wang P. Inorg. Chem., 2009, 48: 2664.
[33] Cao Y M, Bai Y, Yu Q J, Cheng Y M, Liu S, Shi D, Gao F F, Wang P. J. Phys. Chem. C, 2009, 113: 6290.
[34] Lv X J, Wang F F, Li Y H. ACS Appl. Mater. Inter., 2010, 2: 1980.
[35] Jiang K J, Masaki N, Xia J B, Noda S, Yanagida S. Chem. Commun., 2006, 460.
[36] Wu S J, Chen C Y, Chen J G, Li J Y, Tung Y L, Ho K C, Wu C G. Dyes Pigments, 2009, 84: 95.
[37] Kuang D, Klein C, Ito S, Moser J E, Humphry-Baker R, Zakeeruddin S M, Grätzel M. Adv. Funct. Mater., 2007, 17: 154.
[38] Kuang D, Klein C, Snaith H J, Humphry-Baker R, Zakeeruddin S M, Grätzel M. Inorg. Chim. Acta, 2008, 361: 699.
[39] Ocakoglua K, Soguta S, Saricab H, Guloglub P, Erten-Ela S. Synthetic Met., 2013, 174: 24.
[40] El-Shafei A, Hussain M, Islam A, Han L Y. Prog. Photovolt: Res. Appl., 2013.
[41] Péchy P, Rotzinger F P, Nazeeruddin M K, Kohle O, Zakeeruddin S M, Humphry-Baker R, Grätzel M. J. Chem. Soc., Chem. Commun., 1995, 65
[42] Giribabu L, Singh V K, Srinvasu M, Kunar C, Reddy V G, Soujnya Y, Reddy P Y. J. Chem. Sci., 2011, 123: 371.
[43] Giribabu L, Bessho T, Srinivasu M, Vijaykumar ChSoujanya Y, Reddy P Y, Reddy V G, Yum J H, Grätzel M, Nazeeruddin M K. Dalton Trans., 2011, 40: 4497
[44] Kim J J, Choi H, Paek S, Kim C, Lim K, Ju M J, Kang H S, Kang M S, Ko J. Inorg. Chem., 2011, 50: 11340.
[45] Jang S R, Yum J H, Klein C, Kim K J, Wagner P, David O, Grätzel M, Nazeeruddin M K. J. Phys. Chem. C, 2009, 113: 1998.
[46] Bessho T, Yoneda EJ, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M. J. Am. Chem. Soc., 2009, 131: 5933.
[47] Kisserwan H, Ghaddar T H. Dalton Trans., 2011, 40: 3877.
[48] Wu K L, Ku W P, Wang S W, Yella A, Chi Y, Liu S H, Chou P T, Nazeeruddin M K, Grätzel M. Adv. Funct. Mater., 2013, 23: 2285.
[49] Li G C, Bomben P G, Robson K C D, Gorelsky S I, Berlinguette C P, Shatruk M. Chem. Commun., 2012, 48: 8790.
[50] Guimaraes R R, Parussulo A LA, Toma H E, Araki K. Inorg, Chim. Acta, 2013, 404: 23.
[51] Dragonetti C, Valore A, Colombo A, Magni M, Mussini P, Roberto D, Ugo R, Arianna V, Trifletti V, Manfredi N, Abbotto A. Inorg. Chim. Acta, 2013, 405: 98.
[52] Siu C H, Ho C L, He J, Chen T, Cui X N, Zhao J Z, Wong W Y. J. Organomet. Chem., 2013, 748: 75.
[53] Hirata N, Lagref J J, Palomares E J, Durrant J R, Nazeeruddin M K, Gratzel M, Censo D D. Chem. Eur. J., 2004, 10: 595.
[54] Karthikeyan C S, Peter K, Wietasch H, Thelakkat M. Sol. Energy Mat. Sol. C, 2007, 91: 432.
[55] Karthikeyan C S, Wietasch H, Thelakkat M. Adv. Mater., 2007, 19: 1091.
[56] 凡素华( Fan S H), 王科志( Wang K Z)., 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24(8): 1206.
[57] 凡素华( Fan S H), 杨维春( Yang W C), 王科志(Wang K Z). 化学学报(Acta Chimica Sinica), 2008, 66(6): 690.
[58] Li X H, Gui J, Yang H, Wu W J, Li F Y, Tian H, Huang C H. Inorg. Chim. Acta, 2008, 361: 2835.
[59] Chang D M, Kim Y S. J. Nanosci. Nanotechnol., 2012, 12: 5709.
[60] Jin Z Z, Masuda H, Yamanaka N, Minami M, Nakamura T, Nishikitani Y. Chem. Sus Chem., 2008, 1: 901.
[61] Jin Z Z, Masuda H, Yamanaka N, Minami M, Nakamura T, Nishikitani Y. Chem. Lett., 2009, 38: 44.
[62] Jin Z Z, Masuda H, Yamanaka N, Minami M, Nakamura T, Nishikitani Y. J. Phys. Chem. C, 2009, 113: 2618.
[63] Lu S l, Wu T, Ren B F, Geng R. J. Mater. Sci. : Mater. Electron., 2013, 24: 2346.
[64] Hara K, Sugihara H, Tachibana Y, Islam A, Yanagida M, Sayama K, Arakawa H. Langmuir, 2001, 17: 5992.
[65] Yanagida M, Yamaguchi T, Kurashige M, Hara K, Katoh R, Sugihara H, Arakawa H. Inorg. Chem., 2003, 42: 7921.
[66] Singh S P, Gupta K S V, Srinivasu P, Islam A, Karim M R. J. Chem., 2013, 367617: 1.
[67] Chen C Y, Lu H C, Wu C G, Chen J G, Ho K C. Adv. Funct. Mater., 2007, 17: 29.
[68] Onozawa-Komatsuzaki N, Yanagida M, Funaki T, Kasuga K, Sayama K, Sugihara H. Sol. Energy Mat. Sol. C, 2011, 95: 310.
[69] Wang P, Klein C, Moser J E, Humphry-Baker R, Cevey-Ha N L, Charvet R, Comte P, Zakeeruddin S M, Grätzel M. J. Phys. Chem. B, 2004, 108: 17553.
[70] Warnan J, Guerin V M, Anne F B, Pellegrin Y, Blart E, Jacquemin D, Pauporte T, Odobel F. J. Phys. Chem. C, 2013, 117: 8652.
[71] Banerjee T, Kaniyankandy S, Das A, Ghosh H N. Inorg. Chem., 2013, 52: 5366.
[72] Erten-Ela S, Colak S G, Ocakogluo K. Inorg. chimi. Acta, 2013, 405: 252.
[73] Brewster T P, Konezny S J, Sheehan S W, Martini L A, Schmuttenmaer C A, Batista V S, Crabtree R H. Inorg. Chem., 2013, 52: 6752.

[1] 王桂强, 段彦栋, 张娟, 林原, 禚淑萍. 染料敏化太阳能电池掺杂TiO2纳晶光阳极[J]. 化学进展, 2014, 26(07): 1255-1264.
[2] 刘治田, 胡钊, 沈陟, 胡双强, 王子兴, 戚欣. 含Silole共轭聚合物的光电性能[J]. 化学进展, 2012, 24(0203): 377-384.
[3] 林原, 王尚华, 付年庆, 张敬波, 周晓文, 肖绪瑞. 柔性染料敏化太阳电池的制备和性能研究[J]. 化学进展, 2011, 23(0203): 548-556.
[4] 盛显良,刘娜仁,翟锦,安丽平. 一维纳米材料在染料敏化太阳电池中的应用*[J]. 化学进展, 2009, 21(09): 1969-1979.
[5] 王鹏,丁云桥,冯圣玉,张洁. 含N、S官能基聚硅烷*[J]. 化学进展, 2008, 20(12): 1903-1908.
[6]

宋晓睿,王雪松,张宝文,

. 以芳胺为电子给体的D-π-A有机光敏染料---- 染料敏化太阳电池中的应用*[J]. 化学进展, 2008, 20(10): 1524-1533.
阅读次数
全文


摘要

染料敏化太阳电池钌系敏化剂