English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1071-1078 DOI: 10.7536/PC130114 前一篇   后一篇

• 特约稿 •

三氟甲基芳基硫醚的合成

何伟明, 翁志强*   

  1. 福州大学化学化工学院 福州 350108
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 翁志强 E-mail:zweng@fzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21072030)资助

Synthesis of Aryl Trifluoromethyl Thioethers

He Weiming, Weng Zhiqiang*   

  1. College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

三氟甲基芳基硫醚由于具有高疏水性和亲脂性,在医药、农用化学品及材料科学中有着重要的应用。合成含三氟甲硫基的芳香化合物已成为有机氟化学领域的研究热点之一。本文从间接法和直接法两方面综述了向分子中引入三氟甲硫基的相关研究,包括新的三氟甲硫基化试剂以及新的合成方法在制备三氟甲基芳基硫醚中的应用,最后讨论了这些方法存在的问题,并为探索新型的、更加经济的三氟甲硫基化反应提供参考。

Aromatic trifluoromethylthio components (ArSCF3) have found in many pharmaceuticals, agrochemicals and materials because of their high lipophilicity and hydrophobicity parameter. Consequently, the development of efficient methods for preparing ArSCF3 compounds has been a topic of increasing importance in organic synthesis. This review focuses particularly on the presently known trifluoromethylthiolation divided into “direct” and “indirect” methods. Recent advances in the development of new strategies for incorporation of -SCF3 groups into organic molecules including nucleophilic, electrophilic, radical trifluoromethylthiolation, and new trifluoromethylthiolation reagents and reactions are reviewed. Lastly, the synthetic challenges and research trend for trifluoromethylthiolation are also discussed. Contents
1 Introduction
2 Indirect methods for synthesis of aryl trifluoromethyl thioethers
2.1 Halogen-fluorine exchange
2.2 Incorporation of CF3 group to sulfur atom containing substrates
3 Direct methods for synthesis of aryl trifluoromethyl thioethers
3.1 Electrophilic trifluoromethythiolation
3.2 Nucleophilic trifluoromethythiolation
3.3 Transition metal-catalyzed trifluoromethythio-lation
4 Trifluoromethythiolation of olefins and alkynes
5 Conclusion and outlook

中图分类号: 

()

[1] Muller K, Faeh C, Diederich F. Science, 2007, 317: 1881-1886
[2] Hansch C, Leo A, Taft R W. Chem. Rev., 1991, 91: 165-195
[3] Banks R E, Smart B E, Tatlow J C. Organofluorine Chemistry: Principles and Commercial Applications, New York: Plenum Press, 1994
[4] Hiyama T. Organofluorine Compounds: Chemistry and Properties, Berlin: Springer Verlag, 2000
[5] Szmuszkovicz J. J. Med. Chem., 1966, 9: 527-536
[6] Scherer O. Angew. Chem. , 1939, 52: 457-459
[7] Umemoto T, Ishihara S. J. Am. Chem. Soc., 1993, 115: 2156-2164
[8] Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed., 2007, 46: 754-757
[9] Billard T, Langlois B R. Tetrahedron Lett., 1996, 37: 6865-6868
[10] Quiclet-Sire B, Saicic R N, Zard S Z. Tetrahedron Lett., 1996, 37: 9057-9058
[11] Russell J, Roques N. Tetrahedron, 1998, 54: 13771-13782
[12] Large S, Roques N, Langlois B R. J. Org. Chem., 2000, 65: 8848-8856
[13] Blond G, Billard T, Langlois B R. Tetrahedron Lett., 2001, 42: 2473-2475
[14] Inschauspe D, Sortais J B, Billard T, Langlois B R. Synlett, 2003, 2: 233-235
[15] Surya Prakash G K, Hu J B, Olah G A. Org. Lett., 2003, 5: 3253-3256
[16] Pooput C, Medebielle M, Dolbier W R. Org. Lett., 2004, 6: 2301-2303
[17] Cherkupally P, Beier P. Tetrahedron Lett., 2010, 51: 252-255
[18] Movchun V N, Kolomeitsev A A, Yagupolskii Y L. J. Fluorine Chem., 1995, 70: 255-257
[19] Billard T, Large S, Langlois B R. Tetrahedron Lett., 1997, 38: 65-68
[20] Harsányi A, Dorkó É, Csapó Á, Bakó T, Peltz C, Rábai J. J. Fluorine Chem., 2011, 132: 1241-1246
[21] Wakselman C, Tordeux M. J. Chem. Soc. Chem. Commun., 1984, 793-794
[22] Wakselman C, Tordeux M, Clavel J L, Langlois B. J. Chem. Soc. Chem. Commun., 1991, 993-994
[23] Koshechko V G, Kiprianova L A, Fileleeva L L. Tetrahedron Lett., 1992, 33: 6677-6678
[24] Koshechko V G, Kiprianova L A, Fileleeva L L, Rozhkova Z Z. J. Fluorine Chem., 1995, 70: 277-278
[25] Billard T, Roques N, Langlois B R. J. Org. Chem., 1999, 64: 3813-3820
[26] Andreades S, Harris J F, Sheppard W A. J. Org. Chem., 1964, 29: 898-900
[27] Sheppard W A. J. Org. Chem., 1964, 29: 895-898
[28] Haas A, Lieb M, Zhang Y. J. Fluorine Chem., 1985, 29: 297-310
[29] Ferry A, Billard T, Langlois B R, Bacqué E. J. Org. Chem., 2008, 73: 9362-9365
[30] Ferry A, Billard T, Langlois B R, Bacqué E. Angew. Chem. Int. Ed., 2009, 48: 8551-8555
[31] Baert F, Colomb J, Billard T. Angew. Chem. Int. Ed., 2012, 51: 10382-10385
[32] Ferry A, Billard T, Bacqué E, Langlois B R. J. Fluorine Chem., 2012, 134: 160-163
[33] Yagupolskii L M, Kondratenko N V, Sambur V P. Synthesis-Stuttgart, 1975, 721-723
[34] Remy D C, Rittle K E, Hunt C A, Freedman M B. J. Org. Chem., 1976, 41: 1644-1646
[35] Clark J H, Jones C W, Kybett A P, Mc-Clinton M A. J. Fluorine Chem., 1990, 48: 249-253
[36] Clark J H, Tavener S J. J. Fluorine Chem., 1997, 85: 169-172
[37] Adams D J, Goddard A, Clark J H, Macquarrie D J. Chem. Commun., 2000, 987-988
[38] Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K W. Angew. Chem. Int. Ed., 2013, 52: 1548-1552
[39] Chen Q Y, Duan J X. J. Chem. Soc. Chem. Commun., 1993, 918-919
[40] Teverovskiy G, Surry D S, Buchwald S L. Angew. Chem. Int. Ed., 2011, 50: 7312-7314
[41] Zhang C P, Vicic D A. J. Am. Chem. Soc., 2012, 134: 183-185
[42] Zhang C P, Vicic D A. Chem. Asian J., 2012, 7: 1756-1758
[43] Chen C, Xie Y, Chu L, Wang R W, Zhang X, Qing F L. Angew. Chem. Int. Ed., 2012, 51: 2492-2495
[44] Tran L D, Popov I, Daugulis O. J. Am. Chem. Soc., 2012, 134: 18237-18240
[45] Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed., 2013, 52: 3457-3460
[46] Chen C, Chu L, Qing F L. J. Am. Chem. Soc., 2012, 134: 12454-12457
[47] Liu J, Chu L, Qing F L. Org. Lett., 2013, 15: 894-897

[1] 孙思敏, 许家喜. 磺酰氯与不饱和化合物的反应[J]. 化学进展, 2022, 34(6): 1275-1289.
[2] 戚自松, 董亚丽, 李亚明*, 段春迎* . 过渡金属催化芳香化合物三氟甲基化反应[J]. 化学进展, 2012, 24(11): 2177-2186.
[3] 赵萍,尹应武. 阳极氰化反应的研究进展[J]. 化学进展, 2004, 16(06): 926-.
阅读次数
全文


摘要

三氟甲基芳基硫醚的合成