English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 433-441 DOI: 10.7536/PC180623 前一篇   后一篇

• •

亲电微生物及其催化的CO2固定和合成

苏红1,2, 韩业君1,**()   

  1. 1. 中国科学院过程工程研究所 生化工程国家重点实验室 北京 100190
    2. 中国科学院大学 北京 100049
  • 收稿日期:2018-06-20 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 韩业君
  • 基金资助:
    国家自然科学基金项目(21676279); 中国科学院战略性先导科技专项(XDA13040102); 生化工程国家重点实验室先导项目

Electroautotrophic Microorganisms:Uptaking Extracellular Electron and Catalyzing CO2 Fixation and Synthesis

Hong Su1,2, Yejun Han1,**()   

  1. 1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-06-20 Online:2019-02-15 Published:2018-12-20
  • Contact: Yejun Han
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21676279); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13040102); Priority Program of National Key Laboratory of Biochemical Engineering of China

亲电微生物是一类具有胞外电子摄取能力的电活性微生物,其胞外固相电子供体包括金属铁/钢、通电电极以及共生微生物细胞等。亲电微生物一般可利用胞外电子进行CO2的还原和固定,因此将其作为微生物电合成体系的催化剂,可以实现外加清洁电能辅助的CO2固定和能源及化学品的合成,为解决温室效应与能源危机问题提供崭新的思路。亲电微生物自身的代谢特性和电子摄取能力直接影响了整个电合成过程的可行性与能量转换效率。本文系统总结了目前研究确定的能够从金属铁/钢、通电电极以及共生微生物细胞中摄取电子的具体微生物,并对利用这些微生物催化的固定CO2电合成应用研究进行了综述,最后从胞外电子传递机制、催化微生物选择以及基因工程手段改造等方面展望该领域未来的研究方向。

Electroautotrophic microorganisms can uptake electrons from extracellular solid donors such as metallic iron or steel, electrodes, and symbiotic microbial cells. Fuels and commodity chemicals can be produced from CO2 in a bioelectrochemical system powered by electricity and catalyzed by electroautotrophic microorganisms since they are often able to reduce and fix CO2. Thus, this provides a new and promising strategy to cope with the word energy crisis and greenhouse effect. Metabolic properties and electron uptake abilities of electroautotrophic microorganisms have direct and significant influences on viability and productivity of electrosynthesis processes. In this review, a diversity of microbial physiologies uptaking electrons from iron or steel, electrode and microbial cell, including sulphate reduction, methanogenesis, acetogenesis and nitrate reduction, are respectively summarized in the first place. Then, research progress of electrosynthesis of methane, acetate and other chemicals catalyzed by diverse electroautotrophic microorganisms are reviewed. And strategies for improving CO2 fixation and electrosynthesis efficiency and diversifying the products are emphasized, such as defined co-culture construction, cathode material modification and so on. At last, research efforts in clarifying extracellular electron transfer mechanism, catalyzing microorganisms screening and co-culture construction, and genetic engineering of electroautotrophic microbes are proposed as future directions for researchers.

()
表1 与EMIC相关的摄取胞外金属中电子的主要微生物
Table 1 Major isolated strains identified as EMIC-inducing microorganisms
表2 与微生物电合成相关的从通电电极中摄取电子的主要微生物
Table 2 Major microorganisms acquire electrode electrons related to MES
图1 电能驱动下亲电微生物催化的CO2固定和合成原理示意图[32, 38]
Fig. 1 Schematic diagram of microbial electrosynthesis from CO2 [32, 38]
表3 部分微生物电合成研究汇总
Table 3 Part of research involving in microbial electrosynthesis
Product Microorganism Cathode Cathode potential
(V vs. SHE)
Productivity
(mmol·m-2·d-1)
Coulombic efficiency
(%)
ref
CH4
Methanobacterium palustre Carbon cloth -0.80 200 96 18
Desulfopila corrodens strain IS4 &
Methanococcus maripaludis strain MM901
Graphite -0.40
-0.50
24~33.6
144~216
90~110a 40
Methanogenic culture Carbon cloth -0.90 0.055 mmol·d-1·mgVSS-1 80 41
Anaerobic sludge Graphite felt -0.70 115.7 / 42
Methanogenic culture Graphite rod An applied
potential of
0.60
0.47 mL·cm-2·d-1 ~70 43
Acetate
Sporomusa ovata Graphite -0.40 23 85 30
Sporomusa ovata Carbon cloth -0.40 ~6 ~76 47
Sporomusa ovata Carbon cloth treated with Chitosan -0.40 ~45.8 ~86 47
Sporomusa ovata Carbon cloth treated
with Cyanuric
chloride
-0.40 ~41 ~81 47
Sporomusa ovata Carbon cloth treated with Au -0.40 ~36.2 ~83
Sporomusa ovata Ni nanowire coated graphite -0.40 56.4 ~82 48
Sporomusa ovata 3D graphene
functionalized
carbon felt
-0.69 ~231.4 ~86.5 49
Sporomusa silvacetica Graphite -0.40 1.06 ~48 31
Sporomusa sphaeroides Graphite -0.40 0.77 ~84
Clostridium ljungdahlii Graphite -0.40 2.37 ~82
Clostridium aceticum Graphite -0.40 0.98 ~53
Moorella thermoacetica Graphite -0.40 1.74 ~85
Moorella thermoautotrophica penicillin treatment Graphite plate -0.60 vs. SCE 7.14 ~88 50
Moorella thermoautotrophica Carbon felt
immobilized with
microbes
-0.40 58.2 65 51
Desulfopila corrodens strain IS4 & Acetobacterium woodii Graphite -0.40
-0.50
50.4~55.2
136.8~177.6
90~110a 40
Acetogenic mixture Graphene-nickel foam -0.85 3.11 mM·d-1 70 53
Acetogenic mixture Carbon felt with self-assembled graphene oxide/biofilm -0.85 0.17 g·L-1·d-1 77 54
Glycerol Geobacter sulfurreducens Stainless steel -0.40 / / 56
Isobutanol
Isoamylol
Ralstonia eutropha strain LH740D In foil -1.40 17.0
8.0
/ 26
Wax ester Sporomusa ovata & Acinetobacter baylyi Graphite stick -0.69 38 μmol·L-1 4.6 60
[1]
Koch C, Harnisch F . ChemElectroChem, 2016,3:1282.
[2]
李锋(Li F), 宋浩(Song H)) . 生物工程学报 (Chinese Journal of Biotechnology), 2017,33(3):516.
[3]
Enning D, Garrelfs J . Appl. Environ. Microbiol., 2014,80(4):1226. https://www.ncbi.nlm.nih.gov/pubmed/24317078

doi: 10.1128/AEM.02848-13     URL     pmid: 24317078
[4]
许萍(Xu P), 翟羽佳(Zhai Y J), 高飞(Gao F), 汪长征(Wang C Z), 张雅君(Zhang Y J) . 腐蚀科学与防护技术 (Corrosion Science and Protection Technology), 2017,29(3):307.
[5]
Dinh H T, Kuever J, Mussmann M, Hassel A W, Stratmann M, Widdel F . Nature, 2004,427(6977):829. https://www.ncbi.nlm.nih.gov/pubmed/14985759

doi: 10.1038/nature02321     URL     pmid: 14985759
[6]
Venzlaff H, Enning D, Srinivasan J, Mayrhofer K J J, Hassel A W, Widdel F, Stratmann M . Corrosion Sci., 2013,66:88.
[7]
Enning D, Venzlaff H, Garrelfs J, Dinh H T, Meyer V, Mayrhofer K, Hassel A W, Stratmann M, Widdel F . Environ. Microbiol., 2012,14(7):1772. https://www.ncbi.nlm.nih.gov/pubmed/22616633

doi: 10.1111/j.1462-2920.2012.02778.x     URL     pmid: 22616633
[8]
Daniels L, Belay N, Rajagopal B S, Weimer P J . Science, 1987,1987(237):4814.
[9]
Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S . Appl. Environ. Microbiol., 2010,76(6):1783. https://www.ncbi.nlm.nih.gov/pubmed/20118376

doi: 10.1128/AEM.00668-09     URL     pmid: 20118376
[10]
Kato S . Microb. Biotechnol., 2016,9(2):141. https://www.ncbi.nlm.nih.gov/pubmed/26863985

doi: 10.1111/1751-7915.12340     URL     pmid: 26863985
[11]
Mand J, Park H S, Jack T R, Voordouw G . Front. Microbiol., 2014,5:268. https://www.ncbi.nlm.nih.gov/pubmed/24917861

doi: 10.3389/fmicb.2014.00268     URL     pmid: 24917861
[12]
Kato S, Yumoto I, Kamagata Y . Appl. Environ. Microbiol., 2015,81(1):67. https://www.ncbi.nlm.nih.gov/pubmed/25304512

doi: 10.1128/AEM.02767-14     URL     pmid: 25304512
[13]
Xu D, Li Y, Song F, Gu T . Corrosion Sci., 2013,77:385.
[14]
Jia R, Yang D, Xu J, Xu D, Gu T . Corrosion Sci., 2017,127:1.
[15]
Xia J, Xu D, Nan L, Liu H, Li Q, Yang K . Chin. J. Mater. Res., 2016,30(3):161.
[16]
Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S . Appl. Environ. Microbiol., 2015,81(5):1839. https://www.ncbi.nlm.nih.gov/pubmed/25548048

doi: 10.1128/AEM.03741-14     URL     pmid: 25548048
[17]
Iino T, Sakamoto M, Ohkuma M . Int. J. Syst. Evol. Microbiol., 2015,65(9):2865. https://www.ncbi.nlm.nih.gov/pubmed/25991662

doi: 10.1099/ijs.0.000343     URL     pmid: 25991662
[18]
Cheng S, Xing D, Call DF, Logan BE . Environ. Sci. Technol., 2009,43(10):3953. https://www.ncbi.nlm.nih.gov/pubmed/19544913

doi: 10.1021/es803531g     URL     pmid: 19544913
[19]
朱华伟(Zhu H W), 张延平(Zhang Y P), 李寅(Li Y) . 中国科学:生命科学 (SCIENTIA SINICA Vitae), 2016,46(12):1388.
[20]
Gregory K B, Bond D R, Lovley D R . Environ. Microbiol., 2004,6(6):596. https://www.ncbi.nlm.nih.gov/pubmed/15142248

doi: 10.1111/j.1462-2920.2004.00593.x     URL     pmid: 15142248
[21]
Ishii T, Kawaichi S, Nakagawa H, Hashimoto K, Nakamura R . Front. Microbiol., 2015,6:994. https://www.ncbi.nlm.nih.gov/pubmed/26500609

doi: 10.3389/fmicb.2015.00994     URL     pmid: 26500609
[22]
Carbajosa S, Malki M, Caillard R, Lopez M F, Palomares F J, Martin-Gago J A, Rodriguez N, Amils R, Fernandez V M, De Lacey A L . Biosens. Bioelectron., 2010,26(2):877. https://www.ncbi.nlm.nih.gov/pubmed/20678913

doi: 10.1016/j.bios.2010.07.037     URL     pmid: 20678913
[23]
Summers Z M, Gralnick J A, Bond D R . mBio, 2013,4(1):e00420. https://www.ncbi.nlm.nih.gov/pubmed/23362318

doi: 10.1128/mBio.00420-12     URL     pmid: 23362318
[24]
Bose A, Gardel E J, Vidoudez C, Parra E A, Girguis P R . Nat. Commun., 2014,5:3391. https://www.ncbi.nlm.nih.gov/pubmed/24569675

doi: 10.1038/ncomms4391     URL     pmid: 24569675
[25]
Torella J P, Gagliardi C J, Chen J S, Bediako D K, Colon B, Way J C, Silver P A, Nocera D G . Proc. Natl. Acad. Sci. U. S. A., 2015,112(8):2337. https://www.ncbi.nlm.nih.gov/pubmed/25675518

doi: 10.1073/pnas.1424872112     URL     pmid: 25675518
[26]
Li H, Opgenorth P H, Wernick D, Liao J . Science, 2012,335:1596. https://www.ncbi.nlm.nih.gov/pubmed/22461604

doi: 10.1126/science.1217643     URL     pmid: 22461604
[27]
Khunjar W O, Sahin A, West A C, Chandran K, Banta S . PLoS One, 2012,7(9):e44846. https://www.ncbi.nlm.nih.gov/pubmed/23028643

doi: 10.1371/journal.pone.0044846     URL     pmid: 23028643
[28]
Nichols E M, Gallagher J J, Liu C, Su Y, Resasco J, Yu Y, Sun Y, Yang P, Chang M C Y, Chang C J . Proc. Natl. Acad. Sci. U. S. A., 2015,112(37):11461. https://www.ncbi.nlm.nih.gov/pubmed/26305947

doi: 10.1073/pnas.1508075112     URL     pmid: 26305947
[29]
Beese-Vasbender P F, Grote J P, Garrelfs J, Stratmann M, Mayrhofer K J J . Bioelectrochemistry, 2015,102:50. https://www.ncbi.nlm.nih.gov/pubmed/25486337

doi: 10.1016/j.bioelechem.2014.11.004     URL     pmid: 25486337
[30]
Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R . mBio, 2010,1(2):e00103. https://www.ncbi.nlm.nih.gov/pubmed/20714445

doi: 10.1128/mBio.00103-10     URL     pmid: 20714445
[31]
Nevin K P, Hensley S A, Franks A E, Summers Z M, Ou J, Woodard T L, Snoeyenbos-West O L, Lovley D R . Appl. Environ. Microbiol., 2011,77(9):2882. https://www.ncbi.nlm.nih.gov/pubmed/21378039

doi: 10.1128/AEM.02642-10     URL     pmid: 21378039
[32]
Tremblay P L, Angenent L T, Zhang T . Trends Biotechnol., 2017,35(4):360. https://www.ncbi.nlm.nih.gov/pubmed/27816255

doi: 10.1016/j.tibtech.2016.10.004     URL     pmid: 27816255
[33]
McGlynn S E, Chadwick G L, Kempes C P, Orphan V J . Nature, 2015,526(7574):531. https://www.ncbi.nlm.nih.gov/pubmed/26375009

doi: 10.1038/nature15512     URL     pmid: 26375009
[34]
Wegener G, Krukenberg V, Riedel D, Tegetmeyer H E, Boetius A . Nature, 2015,526(7574):587. https://www.ncbi.nlm.nih.gov/pubmed/26490622

doi: 10.1038/nature15733     URL     pmid: 26490622
[35]
Rotaru A E, Shrestha P M, Liu F, Markovaite B, Chen S, Nevin K P, Lovley D R . Appl. Environ. Microbiol., 2014,80(15):4599. https://www.ncbi.nlm.nih.gov/pubmed/24837373

doi: 10.1128/AEM.00895-14     URL     pmid: 24837373
[36]
Rotaru A E, Shrestha P M, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin K P, Lovley D R . Energy Environ. Sci., 2014,7(1):408.
[37]
Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R . Science, 2010,330(6009):1413. https://www.ncbi.nlm.nih.gov/pubmed/21127257

doi: 10.1126/science.1196526     URL     pmid: 21127257
[38]
Rabaey K, Rozendal R A . Nat. Rev. Microbiol., 2010,8(10):706. https://www.ncbi.nlm.nih.gov/pubmed/20844557

doi: 10.1038/nrmicro2422     URL     pmid: 20844557
[39]
Aulenta F, Reale P, Catervi A, Panero S, Majone M . Electrochim. Acta, 2008,53(16):5300.
[40]
Deutzmann J S, Spormann A M . ISME J., 2017,11(3):704. https://www.ncbi.nlm.nih.gov/pubmed/27801903

doi: 10.1038/ismej.2016.149     URL     pmid: 27801903
[41]
Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M . Bioresour. Technol., 2010,101(9):3085.
[42]
Baek G, Kim J, Lee S, Lee C . Bioresour. Technol., 2017,241:1201. https://www.ncbi.nlm.nih.gov/pubmed/28688737

doi: 10.1016/j.biortech.2017.06.125     URL     pmid: 28688737
[43]
Giang H, Zhang J, Zhu Z, Suni I I, Liang Y . Int. J. Energy Res., 2018,42(3):1308.
[44]
Van Eerten-Jansen M C A A, Heijne A T, Buisman C J N, Hamelers H V M . Int. J. Energy Res., 2012,36(6):809.
[45]
Fast A G, Papoutsakis E T . Curr. Opin. Chem. Eng., 2012,1(4):380.
[46]
Aryal N, Tremblay P L, Lizak D M, Zhang T . Bioresour. Technol., 2017,233:184. https://www.ncbi.nlm.nih.gov/pubmed/28279911

doi: 10.1016/j.biortech.2017.02.128     URL     pmid: 28279911
[47]
Zhang T, Nie H, Bain T S, Lu H, Cui M, Snoeyenbos-West O L, Franks A E, Nevin K P, Russell T P, Lovley D R . Energy Environ. Sci., 2013,6(1):217.
[48]
Nie H, Zhang T, Cui M, Lu H, Lovley D R, Russell T P . Phys. Chem. Chem. Phys., 2013,15(34):14290. https://www.ncbi.nlm.nih.gov/pubmed/23881181

doi: 10.1039/c3cp52697f     URL     pmid: 23881181
[49]
Aryal N, Halder A, Tremblay P L, Chi Q, Zhang T . Electrochim. Acta, 2016,217:117.
[50]
Chen S, Fang Y, Jing X, Luo H, Chen J, Zhou S . Bioelectrochemistry, 2018,121:151. https://www.ncbi.nlm.nih.gov/pubmed/29453055

doi: 10.1016/j.bioelechem.2018.02.003     URL     pmid: 29453055
[51]
Yu L, Yuan Y, Tang J, Zhou S . Bioelectrochemistry, 2017,117:23. https://www.ncbi.nlm.nih.gov/pubmed/28525799

doi: 10.1016/j.bioelechem.2017.05.001     URL     pmid: 28525799
[52]
Bajracharya S, Yuliasni R, Vanbroekhoven K, Buisman C J, Strik D P, Pant D . Bioelectrochemistry, 2017,113:26. https://www.ncbi.nlm.nih.gov/pubmed/27631151

doi: 10.1016/j.bioelechem.2016.09.001     URL     pmid: 27631151
[53]
Song T S, Fei K, Zhang H, Yuan H, Yang Y, Ouyang P, Xie J . J. Chem. Technol. Biotechnol., 2018,93(2):457.
[54]
Song T S, Zhang H, Liu H, Zhang D, Wang H, Yang Y, Yuan H, Xie J . Bioresour. Technol., 2017,243:573. https://www.ncbi.nlm.nih.gov/pubmed/28704738

doi: 10.1016/j.biortech.2017.06.164     URL     pmid: 28704738
[55]
Ganigue R, Puig S, Batlle-Vilanova P, Balaguer M D, Colprim J . Chem. Commun., 2015,51(15):3235. https://www.ncbi.nlm.nih.gov/pubmed/25608945

doi: 10.1039/c4cc10121a     URL     pmid: 25608945
[56]
Soussan L, Riess J, Erable B, Delia M L, Bergel A . Electrochem. Commun., 2013,28:27.
[57]
Berzin V, Kiriukhin M, Tyurin M . Letters in Applied Microbiology, 2012,55(2):149. https://www.ncbi.nlm.nih.gov/pubmed/22642684

doi: 10.1111/j.1472-765X.2012.03272.x     URL     pmid: 22642684
[58]
Berzin V, Kiriukhin M, Tyurin M . Appl. Biochem. Biotechnol., 2012,167(2):338. https://www.ncbi.nlm.nih.gov/pubmed/22549584

doi: 10.1007/s12010-012-9697-5     URL     pmid: 22549584
[59]
Krieg T, Sydow A, Faust S, Huth I, Holtmann D . Angew. Chem. Int. Edit., 2018,57(7):1879. http://doi.wiley.com/10.1002/anie.201711302

doi: 10.1002/anie.201711302     URL    
[60]
Lehtinen T, Efimova E, Tremblay P L, Santala S, Zhang T, Santala V . Bioresour. Technol., 2017,243:30. https://www.ncbi.nlm.nih.gov/pubmed/28651136

doi: 10.1016/j.biortech.2017.06.073     URL     pmid: 28651136
No related articles found!