观宇宙之博大 察万物之精微

反映世界科学发展态势的学术期刊

科学观察, 2022, 17(5): 24-34 doi: 10.15978/j.cnki.1673-5668.202205006

研究论文

金属有机骨架材料的研究态势分析

王友梅,1,*, 卢明华2

1 河南大学图书馆 开封 475004
2 河南大学化学化工学院 开封 475004

Research Trend Analysis of Metal Organic Frameworks

Wang Youmei,1,*, Lu Minghua2

1 Library, Henan University, Kaifeng 475004, China
2 College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China

通讯作者: * E-mail: wymei1059@163.com

基金资助: ☆国家自然科学基金项目(22076038)
河南省图书情报研究项目(HNTQL-2021-103)

Corresponding authors: * E-mail: wymei1059@163.com

摘要

[目的/意义] 从文献计量学角度对金属有机骨架材料的发展现状、趋势以及前沿领域进行梳理,旨在为相关科研人员提供有价值的参考和借鉴。[方法/过程] 以2000-2021年科学引文索引(扩展版)数据库(Science Citation Index Expanded,SCIE)文献为数据源,借助文献计量法和可视化分析工具,从不同角度分析了金属有机骨架材料领域的研究现状和研究趋势。[结果/结论] 该领域发文量逐年增加;研究力量主要集中在中国和美国等国家;论文分布在1 100多种期刊上;不同时期研究方向有所不同;金属有机骨架材料领域的研究主题聚焦吸附性能、配位聚合物、纳米粒子、晶体结构等方面,当前的研究热点主要集中在高灵敏检测、光动力疗法、氧化石墨烯、析氧反应、高效去除、电化学传感器、双功能电催化剂、微波吸收等方面,未来几年这些热点仍将延续。

关键词: 金属有机骨架材料; 文献计量学; 可视化分析; 研究态势; CiteSpace; VOSviewer

Abstract

[Objectives/Significance] In order to provide valuable references for researchers in the field of metal organic framework materials(MOFs), [Method/Process] this paper using bibliometric and visual analysis tools analyzes the research status, trends and frontiers of MOFs, based on publications in Science Citation Index Expanded (SCIE) database from 2000 to 2021. [Results/Conclusions] The number of papers in this field is increasing every year, and research strength is mainly concentrated in countries such as China and the United States. These papers are widely distributed in more than 1100 journals with the research directions are different in different periods. The research topics in this field focus on adsorption, coordination polymers, nanoparticles, and crystal structure, etc. Current research hotspots mainly focus on sensitive detection, photodynamic therapy, graphene oxide, oxygen evolution reaction, efficient removal, electrochemical sensors, bifunctional electrocatalyst, and microwave absorption, etc., which will continue in the next few years.

Keywords: metal organic frameworks(MOFs); bibliometric; visual analysis; research situation; CiteSpace; VOSviewer

PDF (5099KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文 推荐给朋友

本文引用格式

王友梅, 卢明华. 金属有机骨架材料的研究态势分析[J]. 科学观察, 2022, 17(5): 24-34 doi:10.15978/j.cnki.1673-5668.202205006

Wang Youmei, Lu Minghua. Research Trend Analysis of Metal Organic Frameworks[J]. Science Focus, 2022, 17(5): 24-34 doi:10.15978/j.cnki.1673-5668.202205006

1 引言

金属有机骨架(Metal Organic Frameworks, MOFs)材料这一概念由Yaghi教授课题组首次提出,他们于1995年在Nature期刊上报道了一个由刚性有机配体均苯三甲酸(BTC)与过渡金属Co合成的具有二维平面结构的配位化合物并称之为MOFs材料,开启了MOFs材料及相关应用研究的序幕[1]。1999年,Yaghi教授团队再次在Nature上报道了通过刚性有机配体BTC与过渡金属Zn构筑的具有简单立方结构的三维经典MOFs材料(MOF-5)[2],该研究将MOFs材料研究推向高潮。MOFs作为一类由有机桥联分子(即配体)与金属离子或金属氧簇形成的多孔配位聚合物,通常具有超高比表面积、大的孔隙率、可调控的尺寸与孔结构等优点[3],目前已被广泛应用于各个研究领域,其中研究最多的几个领域包括气体吸附与分离[4,5]、能量存贮与转化[6,7]、化学成像与感应[8]、异相催化[9]和药物输送[10]等。

研究金属有机骨架材料的论文数量也显著增加,而快速增加的论文数量使得研究人员难以对该材料的研究现状和进展有一个全面的把握。文献计量学是用数学和统计学的方法,定量地分析一切知识载体的交叉科学,已被用于多个学科领域的技术主题分析[11]。郑征等[12]利用文献计量的方法分析电化学高级氧化技术领域整体发展情况,近年趋势显示电化学高级氧化技术研究热点从电化学高级氧化机理逐渐过渡到电化学高级氧化设备等系统层面,提高羟基自由基的反应参与率也将是新的热点;郑征[13]还利用文献计量和专利分析相结合的方法,分析了近10年来全球绿色制氢技术的发展态势。戴竞等[14]基于CiteSpace文献计量法研究了超声化学在光催化领域的研究热点及前沿,结果表明超声化学在光催化领域的研究热点主要集中在超声化学法制备纳米光催化剂、超声降解与光催化降解的耦合等方面。但琼洁等[15]通过高频关键词和高被引文献分析了1995-2016年金属有机骨架材料的研究热点及趋势。随着金属有机骨架材料受关注度的提高,基于MOFs材料的发文量快速增长,如近5年(2017-2021年)的发文量已超过之前20年发文量的总和,热点研究领域也在不断拓宽,因此有必要对金属有机骨架材料的研究现状和研究趋势再次进行调查研究。

本文尝试利用文献计量法和可视化方法对金属有机骨架材料研究领域的相关文献进行梳理,从发文年度、国家/地区、发文期刊、研究方向、研究热点主题等角度,揭示该研究领域在一定时间内的发展现状、趋势以及前沿领域的发展脉络,以期为相关科研人员提供新思路、增添新内容,为科研人员提供有价值的参考和借鉴。

2 数据来源与分析方法

1.1 数据来源

本文分析对象是“金属有机骨架材料”为主题的文献,数据来源于科学引文索引(扩展版)数据库(Science Citation Index Expanded,SCIE)。检索式为:TS=("Metal-organic frameworks" OR "Metal organic frameworks"),文献统计时间窗:2000-2021年,数据采集时间:2022年5月7日,文献类型选择Article和Review,共检索到46 577篇文献。

1.2 分析方法

基于DDA、VOSviewer和CiteSpace等工具通过科学计量与可视化分析了解金属有机骨架材料领域的研究态势。

DDA,全称是Derwent Data Analyzer(旧称Thomson Data Analyzer),是一种分析工具,本身没有数据,外部数据导入后,可进行数据清理、分析和可视化。VOSviewer软件,是一款文献可视化工具,可以使用基本的分类聚类方法对文献进行合作网络分析、共现分析、共被引分析等[16]。CiteSpace软件是由陈超美教授开发的一款信息可视化软件,它可以对特定领域的文献集合进行计量分析,展示出某个研究领域的整体状况,并探寻出该领域知识演化的转折点及关键路径,通过知识图谱的绘制来对学科演化和学科发展前沿进行探测[17]。其中,DDA主要用来进行关键词的清理、合并,以保证分析结果的准确和可靠;VOSviewer软件主要用来进行关键词聚类分析和关键词时序分析;CiteSpace软件主要用来进行关键词突变探测。

3 研究现状

3.1 论文年度分布

SCIE数据库中关于金属有机骨架材料研究的相关文献数量为46 577篇,其中包括42 065篇论文和4 512篇综述。图1为金属有机骨架材料领域年度发文量分布。2000年Yaghi.OM[1]合成具有高孔隙率的MOF-5材料,2000-2004年金属有机骨架材料研究处于起步阶段,随后论文数量呈快速增长趋势,这表明金属有机骨架材料受到研究人员越来越多的关注。特别是最近5年,论文量呈直线增长趋势,5年发文量占论文总量的62.7%。

图1

图1   金属有机骨架材料领域论文年度分布


3.2 发文国家/地区分布

对论文的来源国家/地区进行统计分析,并选取发文量最多的前15个国家/地区绘制散点图(图2),图中X轴代表发文量,Y轴代表篇均被引频次,圆点半径大小代表被引频次的多少。结果显示:论文来自全球120个国家或地区,发文量位居前列的国家包括中国(24 943篇)、美国(6 180篇)、印度(2 275篇)、德国(2 234篇)、韩国(2 032篇)、西班牙(1 669篇)等。其中,中国的发文量占全部发文量的55.8%,遥遥领先于其他国家,其次是美国,发文占比达13.8%。总被引频次较多的国家有中国、美国、韩国、德国、法国等。在发文量最多的前15位国家/地区中,美国的发文量和总被引频次均排名第2,但篇均被引频次高达85.83,位居第1位,篇均被引频次排名第2位的是法国(74.27),中国(30.06)位居第13。中国在金属有机骨架材料领域的成果产出和总被引频次方面遥遥领先,但论文相对影响力与美、法等国还有一定差距。

图2

图2   金属有机骨架材料领域发文量TOP15国家/地区


图3是基于论文合作情况采用VOSviewer绘制的国家/地区之间的合作关系图。选取了金属有机骨架材料研究领域发文量排名前15位的国家/地区,图中圆圈的大小代表发文量的多少,连线的粗细代表合作强度的高低,不同的颜色代表了不同的合作集群。从图3可以看出,中国、美国、德国位于国际合作的中心;中国与其他14个国家/地区存在合作关系,且与美国、澳大利亚、新加坡及日本的合作较为紧密。

图3

图3   金属有机骨架材料领域发文量TOP15国家/地区合作网络


3.3 发文期刊分布

金属有机骨架材料领域的论文分布在1 100多种期刊上,其中载文量最多的10种期刊见表1,表1列出了期刊名称、载文数量、JCR最高分区及相对应的学科类别,除Chemistry-A European Journal的JCR最高分区为Q2之外,其余9种期刊的JCR最高分区均为Q1,说明这些期刊在相关领域均具有较高的影响力。

表1   金属有机骨架材料领域发文量TOP10期刊

排名 期刊名称 论文数/篇 JCR分区 学科类别
1 Crystengcomm 1664 Q1 CRYSTALLOGRAPHY
2 Dalton Transactions 1411 Q1 CHEMISTRY, INORGANIC & NUCLEAR
3 Crystal Growth & Design 1339 Q1 CRYSTALLOGRAPHY
4 Inorganic Chemistry 1328 Q1 CHEMISTRY, INORGANIC & NUCLEAR
5 ACS Applied Materials & Interfaces 1311 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
6 Angewandte Chemie-International Edition 1059 Q1 CHEMISTRY, MULTIDISCIPLINARY
7 Chemical Communications 1049 Q1 CHEMISTRY, MULTIDISCIPLINARY
8 Chemistry-A European Journal 1027 Q2 CHEMISTRY, MULTIDISCIPLINARY
9 Journal of the American Chemical Society 1020 Q1 CHEMISTRY, MULTIDISCIPLINARY
10 Journal of Materials Chemistry A 909 Q1 CHEMISTRY, PHYSICAL

注:JCR分区选取最高分区,学科类别为相对应分区的学科类别。

新窗口打开| 下载CSV


3.4 研究方向分布

将2000-2021年金属有机骨架材料研究领域的论文分三个时间段进行研究方向对比(图4),研究方向的分类参照WOS学科类别。2000-2009年的论文分布在33个研究方向上,主要集中在化学-多学科(43.98%)、无机化学与核化学(32.84%)、物理化学(20.28%)、结晶学(19.76%)等;2010-2018年的论文分布在96个研究方向上,论文量最多的研究方向有化学-多学科(39.41%)、无机化学与核化学(23.63%)、物理化学(23.47%)、材料科学-多学科(23.40%)等;2019-2021年的论文分布在100个研究方向上,论文量最多的研究方向有化学-多学科(29.96%)、材料科学-多学科(27.98%)、物理化学(23.47%)、纳米科学与纳米技术(15.61%)等。

图4

图4   金属有机骨架材料研究方向分布


从三个时间段内论文的研究方向分布看,研究方向越来越广,从33个发展到100个;各主要研究方向的论文比例有所调整,如化学-多学科的论文占比从43.98%下降到39.41%,又降至29.96%,而物理化学、材料科学-多学科、纳米科学与纳米技术、化学工程、分析化学等研究方向的论文占比逐步提高。这说明有越来越多不同领域的研究人员在进行金属有机骨架材料方面的研究,且研究更加趋于向新材料、新技术、新应用领域方面拓展。

4 研究热点与研究趋势

4.1 研究热点主题分布

对金属有机骨架材料研究领域的主题词进行清洗、整理、合并,发现该领域的高频关键词有吸附、配位聚合物、纳米粒子、晶体结构、复合物、设计、二氧化碳、性能、分离、配体等。

进一步利用VOSviewer对主题词进行聚类分析(图5),以揭示热点关键词之间的关联。结果显示,共现频次不低于100次的关键词有536个,关键词隶属同一集群则颜色相同,权重越高则圆圈越大。从图5可以看出,金属有机骨架材料的研究集中在5个聚类。

图5

图5   金属有机骨架材料领域关键词聚类图


聚类1的研究领域集中在金属有机骨架材料的合成及结构研究,代表性高频关键词有配位聚合物、晶体结构、复合物、设计等。Kim, J等利用有机、无机次级结构单元设计、合成具有特定结构的金属有机骨架材料,由于次级结构单元具有任何连接性、大小、组成和立体化学等灵活性的特点,可用于设计和合成多种功能性MOFs[18]

聚类2主要涉及金属有机骨架材料合成中纳米材料的引用及合成材料的应用,高频关键词有纳米颗粒、性能、氧化、催化等。Falcaro, P等综述了基于金属及金属氧化物纳米颗粒的MOFs复合材料的合成,并评估了复合材料在分子吸附和分离、催化、传感、光学、污染物隔离、药物输送和可再生能源方面的性能及应用[19]

聚类3的研究重点是金属有机骨架材料在气体贮存及吸附分离方面的应用,涉及的高频关键词有吸附、二氧化碳、分离、贮存等。Rodenas, T等在聚合物基体中加入MOFs纳米片,使合成的复合材料从CO2/CH4气体混合物中获得卓越的CO2分离性能[20]

聚类4是关于金属有机骨架材料在水处理方面的应用,高频关键词有水、迁移、传感器、水溶液等。例如:Rudd, ND等合成了一系列发光金属有机骨架材料,并将其应用到荧光化学传感和水污染吸附剂中,用于同时检测和去除水中重金属[21]

聚类5的研究集中在金属有机骨架材料在催化领域的应用,高频关键词有效率、氢、还原、转化、催化等。Jiang, HL等合成了具有结构缺陷可控的金属有机骨架材料,即UiO-66-NH2-X(X代表与合成中的连接物有关的乙酸的摩尔当量),在铂纳米颗粒(NPs)作为共催化剂存在下进行光催化制氢,并系统地研究了结构缺陷对光催化性能的影响[22]

4.2 研究趋势分析

利用VOSviewer绘制研究主题词发展时序图(图6),可形象地展示研究主题随时间发生的演变,从而探索研究发展趋势。由图6可以看出,(1)2014年以前,金属有机骨架材料研究主要分布在金属有机骨架材料的网络结构[23]、储氢[24,25]、水热合成[26,27]、结构堆积[28]、二级结构单元[18,29]等方面。(2)2014-2015年,研究主题相对集中在材料的晶体结构[30,31]、配位聚合物[28,32]、设计[33]、配体[34,35]等方面。(3)2016-2017年,金属有机骨架材料的性能研究较受关注,如吸附[36,37]、分离[38,39]、发光[39,40]、氧化[41]、稳定性[42,43]等。(4)2018年,纳米粒子[44,45]、催化剂[46,47]、石墨烯[48,49]、碳[50]等方面得到学者更多关注,并且对由新材料引入构建的金属有机骨架材料的性能进行了更多研究[51,52]。(5)2019年之后,纳米片[53,54]、氧化石墨烯[55,56]在金属有机骨架材料方面的应用,金属有机骨架材料在析氧反应[57,58]、单原子催化剂[59,60]、高效移除[61,62]、灵敏检测[63]等方面的应用成为研究热点。如近两年卢明华课题组制备了单分散介孔二氧化硅与金属有机骨架材料MIL-101(Fe)的复合材料作为吸附剂,实现了对植物中痕量植物激素的提取和浓缩[64];该课题组为改善MOFs材料性能,通过对MOFs材料改性或复合,制备了多种磁性材料用于环境水样中磺胺类抗生素的吸附[65];作为Zr-MOFs的代表,UiO-66具有良好的结晶性和耐受性,可以引入具有不同拓扑结构和功能的配体,卢明华课题组为实现对痕量色素类化合物的高灵敏检测,合成了石墨相氮化碳与氨基化UiO-66复合材料作为吸附剂用于高效浓缩和富集超痕量食品中的色素类物质[66];此外,该课题组采用一锅水热合成法将四(4-羧基苯基)卟啉(TCPP)作为混合配体成功地引入到UiO-66-NH2的骨架中制备了多元UiO-66-NH2/TCPP材料,并将其作为分散固相萃取吸附剂用于双酚类化合物的净化、萃取和富集[67]

图6

图6   金属有机骨架材料领域的关键词聚类时序图


进一步利用CiteSpace的突变词探测功能分析金属有机骨架材料研究领域的发展趋势。对金属有机骨架材料研究的基础数据进行年代切片,每一年为一个时间切片,对每个时间切片中突现关键词进行探测,得到表2。从突变词探测结果和关键词时序图可以看出,配位聚合物、水热合成、二级结构单元、吸附、储氢、发光、氧化石墨烯等关键词均在其突变时间范围内成为热点研究领域,因此,灵敏检测、光动力疗法、氧化石墨烯、析氧反应、高效移除、电化学传感器、双功能电催化剂、微波吸收等是当前研究前沿主题,仍有可能成为金属有机骨架材料领域未来几年的研究热点,值得继续关注。

表2   金属有机骨架材料领域突变词情况

关键词 突变强度 开始年份 结束年份 2000-2022
水热合成 206.69 2002 2013
二级结构单元 135.12 2002 2013
配位聚合物 241.4 2002 2014
超分子异构 94.53 2003 2015
吸附性能 79.14 2004 2013
微孔材料 74.44 2004 2016
氢吸附 80.36 2005 2016
晶体工程 43.76 2005 2016
储氢 308.80 2006 2015
铜(ii)络合物 58.47 2006 2016
高H2吸附 56.12 2007 2014
螺旋链 40.39 2007 2014
多孔固体 39.94 2008 2014
发光性质 84.47 2009 2016
二甲苯异构体 39.93 2009 2016
二氧化碳捕获 46.23 2013 2016
光致发光性能 43.89 2013 2017
灵敏检测 55.73 2018 2022
光动力疗法 44.12 2018 2022
氧化石墨烯 68.71 2019 2022
析氧反应 62.16 2019 2022
高效移除 58.30 2019 2022
电化学传感器 43.31 2019 2022
双功能电催化剂 41.03 2019 2022
微波吸收 40.97 2020 2022

注:表中红色色块表示关键词在该时间段为突变词,蓝色色块表示关键词在该时间段不是突变词。

新窗口打开| 下载CSV


4 结论

金属有机骨架材料的研究在经过初期起步阶段后,于近年迎来飞速发展,论文量呈现快速增长趋势,特别是最近5年,2017-2021年的论文数量占到论文总量的62.7%。中国的研究成果产出和绝对影响力都位居世界第一,但相对影响力与美、法等国相比差距还比较大。在国际合作网络中,中国、美国、德国等是国际合作的中心。

金属有机骨架材料的研究方向越来越广,更加偏向新材料、新技术、新的应用领域。从研究热点与研究趋势来看,金属有机骨架材料的研究热点目前集中在材料的合成及结构研究、纳米材料在合成中的应用、MOFs材料在气体贮存、气体的吸附与分离、水处理、催化等领域的应用等方面。而灵敏检测、光动力疗法、氧化石墨烯、析氧反应、高效移除、电化学传感器、双功能电催化剂、微波吸收等研究主题或将成为金属有机骨架材料领域未来的热门研究方向。

参考文献

Yaghi O M, Li G M, Li H L.

Selective binding and removal of guests in a microporous metal-organic framework

[J]. Nature, 1995, 378(6558): 703-706.

URL     [本文引用: 2]

Li H L, Eddaoudi M, O'Keeffe M, et al.

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

[J]. Nature, 1999, 402(6759): 276-279.

URL     [本文引用: 1]

陈小明, 张杰鹏. 纳米材料前沿金属-有机框架材料[M]. 北京: 化学工业出版社, 2017.

[本文引用: 1]

Li J R, Sculley J, Zhou H C.

Metal-organic frameworks for separations

[J]. Chemical Reviews, 2012, 112(2): 869-932.

URL     [本文引用: 1]

Qian Q H, Asinger P A, Lee M J, et al.

MOF-based membranes for gas separations

[J]. Chemical Reviews, 2020, 120(16): 8161-8266.

PMID:32608973      [本文引用: 1]

Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. In this comprehensive review, we discuss opportunities and challenges related to the formation of pure MOF films and mixed-matrix membranes (MMMs). Common and emerging separation applications are identified, and membrane transport theory for MOFs is described and contextualized relative to the governing principles that describe transport in polymers. Additionally, cross-cutting research opportunities using advanced metrologies and computational techniques are reviewed. To quantify membrane performance, we introduce a simple membrane performance score that has been tabulated for all of the literature data compiled in this review. These data are reported on upper bound plots, revealing classes of MOF materials that consistently demonstrate promising separation performance. Recommendations are provided with the intent of identifying the most promising materials and directions for the field in terms of fundamental science and eventual deployment of MOF materials for commercial membrane-based gas separations.

Zhou X L, Jin H Y, Xia B Y, et al.

Molecular cleavage of metal-organic frameworks and application to energy storage and conversion

[J]. Advanced Materials, 2021, 33(51): 2104341.

[本文引用: 1]

Qiu T J, Liang Z B, Guo W H, et al.

Metal-organic framework-based materials for energy conversion and storage

[J]. ACS Energy Letters, 2020, 5(2): 520-532.

URL     [本文引用: 1]

Lu K D, Aung T, Guo N N, et al.

Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications

[J]. Advanced Materials, 2018, 30(37): 1707634.

[本文引用: 1]

Cai G R, Yan P, Zhang L L, et al.

Metal-organic framework-based hierarchically porous materials: synthesis and applications

[J]. Chemical Reviews, 2021, 121(20): 12278-12326.

PMID:34280313      [本文引用: 1]

Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.

Wu M X, Yang Y W.

Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy

[J]. Advanced Materials, 2017, 29(23): 1606134.

[本文引用: 1]

邱均平. 文献计量学(第2版)[M]. 北京: 科学出版社, 2019.

[本文引用: 1]

郑征, 张凯航.

基于文献计量的电化学高级氧化技术研究现状及发展趋势分析

[J]. 科学观察, 2020, 15(06): 38-46.

[本文引用: 1]

郑征.

近十年全球绿色制氢技术发展态势分析

[J]. 科学观察, 2021, 16(01): 96-108.

[本文引用: 1]

戴竞, 吴春笃, 阿琼, .

基于CiteSpace的超声化学在光催化领域的研究热点及前沿的可视化分析

[J]. 复旦学报(自然科学版), 2018, 57(05): 658-66.

[本文引用: 1]

但琼洁, 韩国强, 郝慧, .

1995—2016年金属有机框架材料研究文献计量分析

[J]. 化工新型材料. 2019, 47(06): 25-28.

[本文引用: 1]

VOSVIEWER. VOSviewer 1.6.16. https://wwwvosviewercom/, 2020.11.25.

URL     [本文引用: 1]

李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化(第2版)[M]. 北京: 首都经济贸易大学出版社, 2017.

[本文引用: 1]

Kim J, Chen B, Reineke T M, et al.

Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures

[J]. Journal of the American Chemical Society, 2001, 123(34): 8239-8247.

PMID:11516275      [本文引用: 2]

The secondary building unit (SBU) has been identified as a useful tool in the analysis of complex metal-organic frameworks (MOFs). We illustrate its applicability to rationalizing MOF crystal structures by analysis of nine new MOFs which have been characterized by single-crystal X-ray diffraction. Tetrahedral SBUs in Zn(ADC)(2).(HTEA)(2) (MOF-31), Cd(ATC).[Cd(H(2)O)(6)](H2O)(5) (MOF-32), and Zn(2)(ATB)(H2O).(H2O)(3)(DMF)(3) (MOF-33) are linked into diamond networks, while those of Ni(2)(ATC)(H(2)O)(4).(H2O)(4) (MOF-34) have the structure of the Al network in SrAl(2). Frameworks constructed from less symmetric tetrahedral SBUs have the Ga network of CaGa(2)O(4) as illustrated by Zn(2)(ATC).(C(2)H(5)OH)(2)(H2O)(2) (MOF-35) structure. Squares and tetrahedral SBUs in Zn(2)(MTB)(H2O)(2).(DMF)(6)(H2O)(5) (MOF-36) are linked into the PtS network, which is the simplest structure type known for the assembly of these shapes. The octahedral SBUs found in Zn(2)(NDC)(3).[(HTEA)(DEF)(ClBz)](2) (MOF-37) form the most common structure for linking octahedral shapes, namely, the boron network in CaB(6). New structure types for linking triangular and trigonal prismatic SBUs are found in Zn(3)O(BTC)(2).(HTEA)(2) (MOF-38) and Zn(3)O(HBTB)(2)(H2O).(DMF)(0.5)(H2O)(3) (MOF-39). The synthesis, crystal structure, and structure analysis using the SBU approach are presented for each MOF.

Falcaro P, Ricco R, Yazdi A, et al.

Application of metal and metal oxide nanoparticles@MOFs

[J]. Coordination Chemistry Reviews, 2016, 307: 237-254.

URL     [本文引用: 1]

Rodenas T, Luz I, Prieto G, et al.

Metal-organic framework nanosheets in polymer composite materials for gas separation

[J]. Nature Materials, 2015, 14(1): 48-55.

PMID:25362353      [本文引用: 1]

Composites incorporating two-dimensional nanostructures within polymeric matrices have potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of freestanding nanosheets has proved challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometre lateral dimensions and nanometre thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increase in the separation selectivity with pressure. As revealed by tomographic focused ion beam scanning electron microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared with isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications.

Rudd N D, Wang H, Fuentes-Fernandez E M A, et al.

Highly efficient luminescent metal-organic framework for the simultaneous detection and removal of heavy metals from water

[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30294-30303.

[本文引用: 1]

Ma X, Wang L, Zhang Q, et al.

Switching on the photocatalysis of metal-organic frameworks by engineering structural defects

[J]. Angewandte Chemie International Edition, 2019, 58(35): 12175-12179.

URL     [本文引用: 1]

Meek S T, Greathouse J A, Allendorf M D.

Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials

[J]. Advanced Materials, 2011, 23(2): 249-267.

URL     [本文引用: 1]

Rosi N L, Eckert J, Eddaoudi M, et al.

Hydrogen storage in microporous metal-organic frameworks

[J]. Science, 2003, 300(5622): 1127-1129.

PMID:12750515      [本文引用: 1]

Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which we associate with hydrogen binding to zinc and the BDC linker, respectively. Preliminary studies on topologically similar isoreticular metal-organic framework-6 and -8 (IRMOF-6 and -8) having cyclobutylbenzene and naphthalene linkers, respectively, gave approximately double and quadruple (2.0 weight percent) the uptake found for MOF-5 at room temperature and 10 bar.

Farha O K, Özgür Yazaydın A, Eryazici I, et al.

De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities

[J]. Nature Chemistry, 2010, 2(11): 944-948.

PMID:20966950      [本文引用: 1]

Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.

Qi Y, Luo F, Che Y X, et al.

Hydrothermal synthesis of Metal—Organic frameworks based on aromatic polycarboxylate and flexible bis(imidazole) ligands

[J]. Crystal Growth \& Design, 2008, 8: 606-611.

[本文引用: 1]

Klinowski J, Paz F A, Silva P, et al.

Microwave-assisted synthesis of metal-organic frameworks

[J]. Dalton Transactions, 2011, 40(2): 321-330.

URL     [本文引用: 1]

Peng Y, Li Y S, Ban Y J, et al.

Membranes.Metal-organic framework nanosheets as building blocks for molecular sieving membranes

[J]. Science, 2014, 346(6215): 1356-1359.

URL     [本文引用: 2]

Song F J, Wang C, Falkowski J M, et al.

Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes

[J]. Journal of the American Chemical Society, 2010, 132(43): 15390-15398.

PMID:20936862      [本文引用: 1]

A family of isoreticular chiral metal-organic frameworks (CMOFs) of the primitive cubic network topology was constructed from [Zn(4)(μ(4)-O)(O(2)CR)(6)] secondary building units and systematically elongated dicarboxylate struts that are derived from chiral Mn-Salen catalytic subunits. CMOFs 1-5 were synthesized by directly incorporating three different chiral Mn-Salen struts into the frameworks under solvothermal conditions, and they were characterized by a variety of methods, including single-crystal X-ray diffraction, PXRD, TGA, and (1)H NMR. Although the CMOFs 1 vs 2 and CMOFs 3 vs 4 pairs were constructed from the same building blocks, they exhibit two-fold interpenetrated or non-interpenetrated structures, respectively, depending on the steric sizes of the solvents that were used to grow the MOF crystals. For CMOF-5, only a three-fold interpenetrated structure was obtained due to the extreme length of the Mn-Salen-derived dicarboxylate strut. The open channel and pore sizes of the CMOF series vary systematically, owing to the tunable dicarboxylate struts and controllable interpenetration patterns. CMOFs 1-5 were shown to be highly effective catalysts for asymmetric epoxidation of a variety of unfunctionalized olefins with up to 92% ee. The rates of epoxidation reactions strongly depend on the CMOF open channel sizes, and the catalytic activities of CMOFs 2 and 4 approach that of a homogeneous control catalyst. These results suggest that, although the diffusion of bulky alkene and oxidant reagents can be a rate-limiting factor in MOF-catalyzed asymmetric reactions, the catalytic activity of the CMOFs with large open channels (such as CMOFs 2 and 4 in the present study) is limited by the intrinsic reactivity of the catalytic molecular building blocks. The CMOF catalysts are recyclable and reusable and retain their framework structures after epoxidation reactions. This work highlights the potential of generating highly effective heterogeneous asymmetric catalysts via direct incorporation of well-defined homogeneous catalysts into framework structures of MOFs.

McDonald T M, Mason J A, Kong X Q, et al.

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks

[J]. Nature, 2015, 519(7543): 303-308.

URL     [本文引用: 1]

Gándara F, Furukawa H, Lee S, et al.

High methane storage capacity in aluminum metal-organic frameworks

[J]. Journal of the American Chemical Society, 2014, 136(14): 5271-5274.

PMID:24661065      [本文引用: 1]

The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal-organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm(3) cm(-3) at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm(3) cm(-3) under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm(3) cm(-3), and between 5 and 80 bar, 230 cm(3) cm(-3).

Tang J, Salunkhe R R, Liu J, et al.

Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon

[J]. Journal of the American Chemical Society, 2015, 137(4): 1572-1580.

PMID:25580699      [本文引用: 1]

Core-shell structured ZIF-8@ZIF-67 crystals are well-designed and prepared through a seed-mediated growth method. After thermal treatment of ZIF-8@ZIF-67 crystals, we obtain selectively functionalized nanoporous hybrid carbon materials consisting of nitrogen-doped carbon (NC) as the cores and highly graphitic carbon (GC) as the shells. This is the first example of the integration of NC and GC in one particle at the nanometer level. Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance (270 F·g(-1)) calculated from the galvanostatic charge-discharge curves at a current density of 2 A·g(-1). Our study not only bridges diverse carbon-based materials with infinite metal-organic frameworks but also opens a new avenue for artificially designed nanoarchitectures with target functionalities.

Wu H B, Xia B Y, Yu L, et al.

Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production

[J]. Nature Communications, 2015, 6: 6512.

PMID:25758159      [本文引用: 1]

Wu, Hao Bin; Xia, Bao Yu; Yu, Le; Yu, Xin-Yao; Lou, Xiong Wen (David) Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore.

Gao W Y, Chen Y, Niu Y H, et al.

Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions

[J]. Angewandte Chemie International Edition, 2014, 53(10): 2615-2619.

URL     [本文引用: 1]

Coudert F X.

Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends

[J]. Chemistry of Materials, 2015, 27(6): 1905-1916.

URL     [本文引用: 1]

Zhao S L, Wang Y, Dong J C, et al.

Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution

[J]. Nature Energy, 2016, 1: 16184.

URL     [本文引用: 1]

Wang B, Lv X L, Feng D W, et al.

Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water

[J]. Journal of the American Chemical Society, 2016, 138(19): 6204-6216.

PMID:27090616      [本文引用: 1]

Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal-organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5'-(4-carboxyphenyl)-2',4',6'-trimethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6',6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer-Emmett-Teller surface area of 3387 and 3948 m(2) g(-1), respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs represent excellent fluorescent properties, which can be efficiently quenched by trace amounts of nitrofurazone (NZF) and nitrofurantoin (NFT) antibiotics as well as 2,4,6-trinitrophenol (TNP) and 4-nitrophenol (4-NP) organic explosives in water solution. They are responsive to NZF and TNP at parts per billion (ppb) levels, which are among the best performing luminescent MOF-based sensing materials. Simultaneously, both MOFs also display high adsorption abilities toward these organic molecules. It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency. These results indicate that BUT-12 and -13 are favorable materials for the simultaneous selective detection and removal of specific antibiotics and organic explosives from water, being potentially useful in monitoring water quality and treating wastewater.

Cui X L, Chen K J, Xing H B, et al.

Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene

[J]. Science, 2016, 353(6295): 141-144.

PMID:27198674      [本文引用: 1]

The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination networks with hexafluorosilicate and organic linkers for the purpose of preferential binding and orderly assembly of acetylene molecules through cooperative host-guest and/or guest-guest interactions. The specific binding sites for acetylene are validated by modeling and neutron powder diffraction studies. The energies associated with these binding interactions afford high adsorption capacity (2.1 millimoles per gram at 0.025 bar) and selectivity (39.7 to 44.8) for acetylene at ambient conditions. Their efficiency for the separation of acetylene/ethylene mixtures is demonstrated by experimental breakthrough curves (0.73 millimoles per gram from a 1/99 mixture). Copyright © 2016, American Association for the Advancement of Science.

Huang R W, Wei Y S, Dong X Y, et al.

Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework

[J]. Nature Chemistry, 2017, 9(7): 689-697.

URL     [本文引用: 2]

Feng X, Feng Y Q, Guo N, et al.

Series d-f heteronuclear metal-organic frameworks: color tunability and luminescent probe with switchable properties

[J]. Inorganic Chemistry, 2017, 56(3): 1713-1721.

PMID:28094932      [本文引用: 1]

A series of five unique d-f heteronuclear luminescent metal-organic frameworks (MOFs) in an entangled polyrotaxane array and the light-harvesting block homonuclear zinc compound have been isolated successfully and characterized. The series of isostructural polymers feature 3,4-connected (4.8)(4.8.9)(6.8.9)(6.9)(8) topology and high stability, exhibiting diverse void spaces. By taking advantage of the isostructural MOFs 2 and 3, the intensities of red and green emissions can be modulated by adjusting the ratios of Eu and Tb ions correspondingly, and white-light emission can be generated by a combination of different doped Tb and Eu concentrations. The Tb-Zn-based framework {[TbZn(bipy)(Hmimda) (HO)]·5HO} (3; Hmimda = 2-methyl-1-H-imidazole-4,5-dicarboxylic acid and bipy = 4,4'-bipyridine) can detect trace Mg ion with relatively high sensitivity and selectivity. Dehydrated MOF 3a shows a remarkable emission quenching effect through the introduction of I solids. Further investigation indicates that it exhibits turn on/off switchable properties for small solvent molecules or heavy-metal ions. Steady/transient-state near-IR luminescence properties for MOFs 1, 4, and 5 were investigated under visible-light excitation.

Zhao M T, Yuan K, Wang Y, et al.

Metal-organic frameworks as selectivity regulators for hydrogenation reactions

[J]. Nature, 2016, 539(7627): 76-80.

URL     [本文引用: 1]

Xia B Y, Yan Y, Li N, et al.

A metal-organic framework-derived bifunctional oxygen electrocatalyst

[J]. Nature Energy, 2016, 1: 15006.

URL     [本文引用: 1]

Yin P Q, Yao T, Wu Y E, et al.

Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts

[J]. Angewandte Chemie International Edition, 2016, 55(36): 10800-10805

URL     [本文引用: 1]

Zhang L, Wan S S, Li C X, et al.

An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion

[J]. Nano Letters, 2018, 18(12): 7609-7618.

PMID:30383966      [本文引用: 1]

Chemodynamic therapy (CDT) can efficiently destroy tumor cells via Fenton reaction in the presence of HO and a robust catalyst. However, it has faced severe challenges including the limited amounts of HO and inefficiency of catalysts. Here, an adenosine triphosphate (ATP)-responsive autocatalytic Fenton nanosystem (GOx@ZIF@MPN), incorporated with glucose oxidase (GOx) in zeolitic imidazolate framework (ZIF) and then coated with metal polyphenol network (MPN), was designed and synthesized for tumor ablation with self-supplied HO and TA-mediated acceleration of Fe(III)/Fe(II) conversion. In the ATP-overexpressed tumor cells, the outer shell MPN of GOx@ZIF@MPN was degraded into Fe(III) and tannic acid (TA) and the internal GOx was exposed. Then, GOx reacted with the endogenous glucose to produce plenty of HO, and TA reduced Fe(III) to Fe(II), which is a much more vigorous catalyst for the Fenton reaction. Subsequently, self-produced HO was catalyzed by Fe(II) to generate highly toxic hydroxyl radical (•OH) and Fe(III). The produced Fe(III) with low catalytic activity was quickly reduced to reactive Fe(II) mediated by TA, forming an accelerated Fe(III)/Fe(II) conversion to guarantee efficient Fenton reaction-mediated CDT. This autocatalytic Fenton nanosystem might provide a good paradigm for effective tumor treatment.

Wang S Z, McGuirk C M, d'Aquino A, et al.

Metal-organic framework nanoparticles

[J]. Advanced Materials, 2018, 30(37): 1800202.

[本文引用: 1]

Wang X X, Cullen D A, Pan Y T, et al.

Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells

[J]. Advanced Materials, 2018, 30(11): 1706758.

[本文引用: 1]

Zhang M D, Dai Q B, Zheng H G, et al.

Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting

[J]. Advanced Materials, 2018, 30(10): 1705431.

[本文引用: 1]

Jiang K, Siahrostami S, Zheng T T, et al.

Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction

[J]. Energy & Environmental Science, 2018, 11(4): 893-903.

[本文引用: 1]

Li X N, Huang X, Xi S B, et al.

Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis

[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475.

PMID:30165734      [本文引用: 1]

The Fenton-like process presents one of the most promising strategies to generate reactive oxygen-containing radicals to deal with the ever-growing environmental pollution. However, developing improved catalysts with adequate activity and stability is still a long-term goal for practical application. Herein, we demonstrate single cobalt atoms anchored on porous N-doped graphene with dual reaction sites as highly reactive and stable Fenton-like catalysts for efficient catalytic oxidation of recalcitrant organics via activation of peroxymonosulfate (PMS). Our experiments and density functional theory (DFT) calculations show that the CoN site with a single Co atom serves as the active site with optimal binding energy for PMS activation, while the adjacent pyrrolic N site adsorbs organic molecules. The dual reaction sites greatly reduce the migration distance of the active singlet oxygen produced from PMS activation and thus improve the Fenton-like catalytic performance.

Fang G Z, Wu Z X, Zhou J, et al.

Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode

[J]. Advanced Energy Materials, 2018, 8(19): 1703155.

[本文引用: 1]

Zhang R, Zhou T T, Wang L L, et al.

Metal-organic frameworks-derived hierarchical Co3O4 structures as efficient sensing materials for acetone detection

[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9765-9773.

[本文引用: 1]

Jiang X C, Li H M, Li S L, et al.

Metal-organic framework-derived Ni-Co alloy@carbon microspheres as high-performance counter electrode catalysts for dye-sensitized solar cells

[J]. Chemical Engineering Journal, 2018, 334: 419-431.

URL     [本文引用: 1]

Zhang Y F, Park S J.

Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI)

[J]. Applied Catalysis B: Environmental, 2019, 240: 92-101.

URL     [本文引用: 1]

Huang L L, Chen D W, Luo G, et al.

Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting

[J]. Advanced Materials, 2019, 31(28): 1901439.

[本文引用: 1]

Hao M J, Qiu M Q, Yang H, et al.

Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis

[J]. Science of the Total Environment, 2021, 760: 143333.

URL     [本文引用: 1]

Shu R W, Zhang J B, Guo C L, et al.

Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band

[J]. Chemical Engineering Journal, 2020, 384: 123266.

URL     [本文引用: 1]

Zhou W, Huang D D, Wu Y P, et al.

Stable hierarchical bimetal-organic nanostructures as HighPerformance electrocatalysts for the oxygen evolution reaction

[J]. Angewandte Chemie International Edition, 2019, 58(13): 4227-4231.

URL     [本文引用: 1]

Cheng W R, Zhao X, Su H, et al.

Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis

[J]. Nature Energy, 2019, 4(2): 115-122.

URL     [本文引用: 1]

Zheng T T, Jiang K, Ta N, et al.

Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst

[J]. Joule, 2019, 3(1): 265-278.

URL     [本文引用: 1]

Sun T T, Xu L B, Wang D S, et al.

Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion

[J]. Nano Research, 2019, 12(9): 2067-2080.

URL     [本文引用: 1]

Li H, Zhai F W, Gui D X, et al.

Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks

[J]. Applied Catalysis B: Environmental, 2019, 254: 47-54.

URL     [本文引用: 1]

Jiang S F, Ling L L, Chen W J, et al.

High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors

[J]. Chemical Engineering Journal, 2019, 359: 572-583.

URL     [本文引用: 1]

Tu X L, Gao F, Ma X, et al.

Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide

[J]. Journal of Hazardous Materials, 2020, 396: 122776.

URL     [本文引用: 1]

Qin P G, Zhu W L, Han L Z, et al.

Monodispersed mesoporous SiO2@metal-organic framework (MSN@MIL-101(Fe)) composites as sorbent for extraction and preconcentration of phytohormones prior to HPLC-DAD analysis

[J]. Mikrochimica Acta, 2020, 187(6): 367.

[本文引用: 1]

Qin P G, Han L Z, Zhang X W, et al.

MIL-101(Fe)-derived magnetic porous carbon as sorbent for stir bar sorptive-dispersive microextraction of sulfonamides

[J]. Mikrochimica Acta, 2021, 188(10): 340.

PMID:34523015      [本文引用: 1]

Using MIL-101(Fe) as the source of carbon and Fe, a magnetic porous carbon (MPC) material with FeC nanoparticles encapsulated in porous carbon was prepared through one-pot pyrolysis under N atmosphere. With MPC as adsorption material, a stir bar sorptive-dispersive microextraction (SBSDME) method was proposed to extract and preconcentrate sulfonamides (SAs) prior to HPLC-DAD determination. To investigate their extraction ability, different MPC materials were prepared under different carbonization temperatures (600, 700, 800, 900, and 1000 °C). The material prepared under 900 °C (MPC-900) exhibited the highest extraction ability for SAs. The as-prepared MPC materials were also characterized by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, zeta potential, and other techniques. The main parameters that affect extraction were systematically studied. Under optimal conditions, favorable linearity (R ≥ 0.9938) and detection limits (0.02-0.04 ng mL) of sulfonamides were obtained. The average recoveries for spiked milk and lake water samples ranged from 76.9 to 109% and from 75.4 to 118% with RSDs of 3.10-9.63% and 1.71-11.3%, respectively. Sulfameter and sulfisoxazole were detected in milk sample. Sulfisoxazole was detected in the lake water sample. The MPC-900 material demonstrated excellent reusability. It can be reused 24 times with peak areas having no obvious decline. The method can be applied to extract ultra-trace compounds in complex sample matrices. Schematic presentation of a stir bar sorptive-dispersive microextraction (SBSDME) by using magnetic porous carbon (MPC) composites as sorbent combined with high-performance liquid chromatography for sensitive analysis of sulfonamides in milk and lake water samples.© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Zhang X W, Yang Y X, Qin P G, et al.

Facile preparation of nano-g-C3N4/UiO-66-NH2 composite as sorbent for high-efficient extraction and preconcentration of food colorants prior to HPLC analysis

[J]. Chinese Chemical Letters, 2022, 33(2): 903-906..

URL     [本文引用: 1]

Han L Z, Zhang X W, Li D, et al.

Fabrication of stable multivariate metal-organic frameworks with excellent adsorption performance toward bisphenols from environmental samples

[J]. Talanta, 2021, 235: 122818.

URL     [本文引用: 1]

/