English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1357-1365 DOI: 10.7536/PC170436 前一篇   后一篇

• 综述 •

Cu2Se基“声子液体”类热电材料

何新民1,2, 张婷1*, 陈飞1, 蒋俊3   

  1. 1. 北京石油化工学院材料科学与工程学院 北京 102617;
    2. 北京化工大学材料科学与工程学院 北京 100029;
    3. 中国科学院宁波材料技术与工程研究所 宁波 315201
  • 收稿日期:2017-04-25 修回日期:2017-09-29 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 张婷,e-mail:zting@bipt.edu.cn E-mail:zting@bipt.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51501014)、北京市教育委员会科技计划一般项目(No.KM201610017005)、北京市组织部人才项目(No.2015000020124G062)和北京大学生研究训练计划(No.2017J00059)资助

Cu2Se-Based Phonon Liquid Thermoelectric Materials

Xinmin He1,2, Ting Zhang1*, Fei Chen1, Jun Jiang3   

  1. 1. Department of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
    2. Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2017-04-25 Revised:2017-09-29 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51501014), the Scientific and Technological Program of Beijing Municipal Education Commission (No. KM201610017005), the Talents Project of Beijing Municipal Organization Department (No. 2015000020124G062), and the Undergraduates Research Training Program of Beijing (No. 2017J00059).
热电材料是一类能够实现热能和电能之间直接相互转化的半导体功能材料,在热电制冷和温差发电等领域具有广阔的应用前景。目前,转换效率低是制约热电材料应用的主要原因,因此,如何提高和优化影响转换效率的热电优值是当前研究的主要问题。Cu2Se基“声子液体”类热电材料是一种利用特殊晶体结构获得极低热导率的新型高性能热电材料,Cu2Se在高温时会发生结构性相变,Cu原子变成可自由迁移的类液态Cu离子,通过强烈散射声子来降低材料的晶格热导率,对Cu2Se的研究大大推动了热电领域的发展。本文围绕“声子液体”类热电材料,分析概括了Cu2Se的性质、晶体结构与应用领域,重点阐述了国内外有关Cu2Se基“声子液体”类热电材料的研究成果、制备方法以及性能优化手段,结合目前的研究状况分析并展望了今后“声子液体”类热电材料的发展方向以及提高性能的策略。
Thermoelectric materials are one kind of functional materials which can directly realize the interconversion of thermal energy and electrical energy and have a promising application prospect in the fields of thermoelectric refrigeration and power generation. Currently, the low conversion efficiency limits the applications of thermoelectric materials. How to improve and optimize the thermoelectric figure of merit becomes very important in the current research. Cu2Se-based phonon liquid thermoelectric materials are one new type of high performance thermoelectric materials with extremely low thermal conductivity by their special crystal structure, the researches of which have greatly promoted the development of thermoelectric materials. Cu2Se undergoes a structural phase transition at high temperature, where the Cu atoms become the freely migrating liquid-like Cu ions. This special liquid-like behavior of Cu ions leads to the lower lattice thermal conductivity of materials by strong phonon scattering. In this paper, the Cu2Se-based phonon liquid thermoelectric materials are focused on. The basic properties, special crystal structure and applications of Cu2Se are summarized. The research achievements, preparation methods as well as the performance optimization means of Cu2Se-based thermoelectric materials are introduced elaborately. Finally, the future research aspects and new ideas for improving the performance of phonon liquid thermoelectric materials are also analyzed and prospected.
Contents
1 Introduction
2 Properties of Cu2Se and Cu2Se-based phonon liquid thermoelectric materials
2.1 Properties of Cu2Se
2.2 The concept of Cu2Se-based phonon liquid thermoelectric materials
3 Development of Cu2Se-based phonon liquid thermoelectric materials
3.1 Preparation methods of Cu2Se-based phonon liquid thermoelectric materials
3.2 Performance optimization means of Cu2Se-based phonon liquid thermoelectric materials
4 Conclusion

中图分类号: 

()
[1] Xi H X, Luo L G, Fraisse G. Renew. Sust. Energ. Rev., 2007, 11:923.
[2] Thirugnanasambandam M, Iniyan S, Goic R. Renew. Sust. Energ. Rev., 2010, 14:312.
[3] Afshar O, Saidur R, Hasanuzzaman M, Jameel M. Renew. Sust. Energ. Rev., 2012, 16:5639.
[4] Tritt T M, Subramanian M A. MRS Bull., 2006, 31:188.
[5] Disalvo F J. Science, 1999, 285:703.
[6] Sales B C. Science, 2002, 295:1248.
[7] Bell L E. Science, 2008, 321:1457.
[8] Riffat S B, Ma X L. Appl. Therm. Eng., 2003, 23:913.
[9] Dai D, Zhou Y X, Liu J. Renew. Energ., 2011, 36:3530.
[10] Chen G K, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T. Int. Mater. Rev., 2003, 48:45.
[11] Zhang T, Jiang J, Xiao Y K, Zhai Y B, Yang S H, Xu G J. J. Mater. Chem. A, 2013, 1:966.
[12] Zhang T, Jiang J, Xiao Y K, Zhai Y B, Yang S H, Xu G J, Ren Z F. RSC Adv., 2013, 3:4951.
[13] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G. Adv. Mater., 2010, 22:3970.
[14] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M. Nature, 2012, 489:414.
[15] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Energ. Environ. Sci., 2011, 5:5147.
[16] Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke, D R. Chem. Mater., 2013, 25:2911.
[17] Tan G J, Zhao L D, Kanatzidis M G. Chem. Rev., 2016, 116:12123.
[18] Sootsman J R, Chung D Y, Kanatzidis M G. Angew. Chem. Int. Ed., 2009, 48:8616.
[19] Snyder G J, Toberer E S. Nat. Mater., 2008, 7:105.
[20] Lan Y C, Minnich A J, Chen G, Ren Z F. Adv. Funct. Mater., 2010, 20:357.
[21] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433.
[22] Chen S, Ren Z F. Mater. Today, 2013, 16:387.
[23] Qiu P F, Shi X, Chen L D. Energ. Stor. Mater., 2016, 3:85.
[24] Glazov V M, Pashinkin A S, Fedorov V A. Inorg. Mater., 2000, 36:641.
[25] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T, Snyder G J. Nat. Mater., 2012, 11:422.
[26] Tyagi K, Gahtori B, Bathula S, Auluck S, Dhar A. Appl. Phys. Lett., 2014, 105:173905.
[27] Yang L, Chen Z G, Han G, Hong M, Zou Y C, Zou J. Nano Energ., 2015, 16:367.
[28] Glen A S. CRC Handbook of Thermoelectrics, Boca Raton:CRC Press, 1995. 407.
[29] Mi J L, Zhao X B, Zhu T J, Ma J. J. Alloy. Compd., 2008, 452:225.
[30] Mi J L, Zhao X B, Zhu T J, Tu J P. Appl. Phys. Lett., 2007, 91:172116.
[31] Tang X F, Li H, Zhang Q J, Niino M, Goto T. J. Appl. Phys., 2006, 100:123702.
[32] Sales B C, Mandrus D, Williams R K. Science, 1996, 272:1325.
[33] 刘灰礼(Liu H L), 何颖(He Y), 史迅(Shi X), 郭向欣(Guo X X), 陈立东(Chen L D). 科学通报(Chinese Science Bulletin), 2013, 58(25):2603.
[34] Liu H L, Yuan X, Lu P, Shi X, Xu F F, He Y, Tang Y S, Bai S Q, Zhang W Q, Chen L D, Lin Y, Shi L, Lin H, Gao X Y, Zhang X M, Chi H, Uher C. Adv. Mater., 2013, 25:6607.
[35] He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder G J. Adv. Mater., 2014, 26:3974.
[36] Xiao X X, Xie W J, Tang X F, Zhang Q J. Chinese Phys. B, 2011, 20:087201.
[37] Liu H L, Shi X, Kirkham M, Wang H, Li Q, Uher C, Zhang W Q, Chen L D. Mater. Lett., 2013, 93:121.
[38] Skomorokhov A N, Trots D M, Knapp M, Bickulova N N, Fuess H. J. Alloy. Compd., 2006, 421:64.
[39] Chrissafis K, Paraskevopoulos K M, Manolikas C. J. Therm. Anal. Calorim., 2006, 84:195.
[40] Tyagi K, Gahtori B, Bathula S, Jayasimhadri M, Sharma S, Singh N K, Haranath D, Srivastava A K, Dhar A. Solid State Commun., 2015, 207:21.
[41] Suryanarayana C, Ivanov E, Boldyrev V V. Mater. Sci. Eng. A, 2001, 304:151.
[42] Ohtani T, Motoki M, Koh K, Ohshima K. Mater. Res. Bull., 1995, 30:1495.
[43] Machado K D, de Lima J C, Grandi T A, Campos C E M, Maurmann C E, Gasperini A A M, Souza S M, Pimenta A F. Acta Crystallogr. B, 2004, 60:282.
[44] Yu B, Liu W S, Chen S, Wang H, Wang H Z, Chen G, Ren Z F. Nano Energ., 2012, 1:472.
[45] 周曙(Zhou S), 方晓东(Fang X D), 邓赞红(Deng Z H), 李达(Li D).化学进展(Progress in Chemistry), 2010, 22(02/03):352.
[46] Liu K G, Liu H, Wang J Y, Shi L. J. Alloy. Compd., 2009, 484:674.
[47] Kumar P, Singh K, Srivastava O N. J. Cryst. Growth, 2010, 312:2804.
[48] Hessel C M, Pattani V P, Rasch M, Panthani M G, Koo B, Tunnell J W, Korgel B A. Nano Lett., 2011, 11:2560.
[49] Vinod T P, Jin X, Kim J K. Mater. Res. Bull., 2011, 46:340.
[50] Bakshi M S, Thakur P, Khullar P, Kayr G, Banipal T S. Cryst. Growth Des., 2010, 10:1813.
[51] 惠乐(Hui L), 唐子龙(Tang Z L), 罗绍华(Luo S H), 张中太(Zhang Z T).化学进展(Progress in Chemistry), 2007, 19(10):1460.
[52] Gurin V S, Prokopenko V B, Alexeenko A A, Wang S, Prokoshin P V. Mater. Sci. Eng. C, 2001, 15:93.
[53] Gurin V S, Alexeenko A A, Zolotovskaya S A, Yumashev K V. Materials Science and Engineering C, 2006, 26:952.
[54] Choi J W, Kang N, Yang H Y, Kim H J, Son S U. Chem. Mater., 2010, 22:3586.
[55] Pathan H M, Lokhande C D, Amalnerkar D P, Seth T. Appl. Surf. Sci., 2003, 211:48.
[56] Liu T C, Hu Y, Chang W B. Mater. Sci. Eng. B, 2014, 180:33.
[57] Yang M, Shen Z, Liu X, Wang W. J. Electron. Mater., 2016, 45:1974.
[58] Lee W, Myung N, Rajeshwar K, Lee C W. J. Electrochem. Sci. Technol., 2013, 4:140.
[59] Zhang L, He W Y, Chen X Y, Du Y, Zhang X, Shen Y H, Yang F C. Surf. Sci., 2015, 631:173.
[60] Ballikaya S, Chi H, Salvador J R, Uher C. J. Mater. Chem. A, 2013, 1:12478.
[61] Ji Y H, Ge Z H, Li Z D, Feng J. J. Alloy. Compd., 2016, 680:273.
[62] Tyagi K, Gahtori B, Bathula S, Jayasimhadri M, Singh N K, Sharma S, Haranath D, Srivastava A K, Dhar A. J. Phys. Chem. Solids, 2015, 81:100.
[63] Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S. Mater. Trans., 2012, 53:1212.
[64] Day T W, Borup K A, Zhang T S, Drymiotis F, Brown D R, Shi X, Chen L D, Iversen B B, Snyder G J. Mater. Renew. Sust. Energ., 2014, 3:26.
[65] Tewari G C, Tripathi T S, Rastogi A K. Z. Krist. Cryst. Mater., 2010, 225:471.
[66] Wang X B, Qiu P F, Zhang T S, Ren D D, Wu L H, Shi X, Yang J H, Chen L D. J. Mater. Chem. A, 2015, 3:13662.
[67] Yang J F, Chen S P, Du Z L, Liu X L, Cui J L. Dalton T., 2014, 43:15228.
[68] Fan J, Schnelle W, Antonyshyn I, Veremchuk I, Carrillo-Cabrera W, Shi X, Grinb Y, Chen L D. Dalton Trans., 2014, 43:16788.
[69] Ye Z X, Cho J Y, Tessema M M, Salvador J R, Waido R A, Wang H, Cai W. J. Solid State Chem., 2013, 201:262.
[70] Oudah M, Kleinke K M, Kleinke H. Inorg. Chem., 2015, 54:845.
[71] Zhong B, Zhang Y, Li W Q, Chen Z R, Cui J Y, Li W, Xie Y D, Hao Q, He Q Y. Appl. Phys. Lett., 2014, 105:123902.
[1] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[2] 何新民, 张婷, 陈飞, 蒋俊. 石墨烯在复合热电材料中的应用[J]. 化学进展, 2018, 30(4): 439-447.
阅读次数
全文


摘要

Cu2Se基“声子液体”类热电材料