English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 433-444 DOI: 10.7536/PC220812 前一篇   后一篇

• 综述 •

柔性热电材料的研究进展及应用

董宝坤, 张婷*(), 何翻   

  1. 北京石油化工学院新材料与化工学院 北京 102617
  • 收稿日期:2022-08-15 修回日期:2022-09-29 出版日期:2023-03-24 发布日期:2023-02-20
  • 基金资助:
    国家自然科学基金项目(51501014); 2021年北京市大学生创新创业训练计划(2021J00057); 2022年国家级大学生创新创业训练计划资助

Research Progress and Application of Flexible Thermoelectric Materials

Dong Baokun, Zhang Ting(), He Fan   

  1. College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology,Beijing 102617,China
  • Received:2022-08-15 Revised:2022-09-29 Online:2023-03-24 Published:2023-02-20
  • Contact: *e-mail: zting@bipt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51501014); 2021 Beijing Undergraduates Research Training Program(2021J00057); 2022 National Undergraduates Research Training Program of China

热电材料是能够实现热能和电能直接相互转化的一类新型能源材料,在温差发电和半导体制冷两方面有重要应用。与传统热电材料相比,柔性热电材料具有形状可弯曲、重量轻和环境友好等优点,在可穿戴设备及其他柔性电子领域具有较好的应用前景。当前,如何进一步提高柔性热电材料的性能,特别是如何协同优化其柔韧性能与热电性能是研究的关键。本文结合近年的研究热点,综述了聚合物基柔性热电材料、碳基柔性热电材料和无机半导体类柔性热电材料的研究进展,详细介绍了这三类柔性热电材料的特点、性能优化以及制备方法,总结了柔性热电材料在电子、医疗和工业等领域的应用,并结合现存的一些问题和不足对柔性热电材料今后的研究方向进行了展望。

Thermoelectric materials, as one new kind of energy materials, can realize the direct conversion of thermal and electrical energy, which have important applications in power generation and refrigeration. Compared with traditional thermoelectric materials, flexible thermoelectric materials demonstrate excellent application prospects in wearable devices and flexible electronics fields, due to the advantages of being bendable, a lightweight and environmentally friendly. At present, how to further improve the performance of flexible thermoelectric materials is the focus, especially the collaborative optimization of flexibility andthermoelectric properties. In this paper, we have reviewed the research progress of polymer-based flexible thermoelectric materials, carbon-based flexible thermoelectric materials and inorganic semiconductor flexible thermoelectric materials, introduced their characteristics, performance optimization and preparation methods, and summarized the applications of flexible thermoelectric materials in the fields of electronics, medicine and industry. Also, based on the shortcomings of flexible thermoelectric materials, the future research directions are prospected.

Contents

1 Introduction

2 Types of flexible thermoelectric materials and their thermoelectric properties

2.1 Polymer-based flexible thermoelectric materials

2.2 Carbon-based flexible thermoelectric materials

2.3 Inorganic semiconductor flexible thermoelectric materials

3 Preparation method of flexible thermoelectric materials

3.1 Physical vapor deposition

3.2 In-situ polymerization

3.3 Electrospinning

3.4 High temperature melting method

4 Applications of flexible thermoelectric materials

5 Conclusion and outlook

()
图1 近几年报道的柔性热电材料(导电聚合物[21?~23]、碳纳米管[24?~26]、无机薄膜[27?~29]和块体无机材料[30?~32])的ZT值
Fig. 1 ZT values of different FTE materials (conductive polymers[21?~23], carbon nanotubes[24?~26], inorganic films[27?~29], inorganic bulks[30?~32]) reported in recent years
图2 (a)PEDOT:PSS类纸状薄膜的柔韧性;(b)室温下柔性PEDOT:PSS类纸状薄膜掺杂不同物质后的电学性能[21];SnSe纳米片/PEDOT:PSS复合材料在室温下的Seekbeck系数(c)和ZT值(d)随SnSe纳米片含量的变化[36]
Fig. 2 (a)Flexibility of PEDOT:PSS bulky papers;(b)Electrical properties of flexible PEDOT:PSS bulky paper doped with different substances[21];Seekbeck coefficient (c) and ZT value (d) of SnSe nanosheets/PEDOT:PSS composites with various of SnSe nanosheet contents at room temperature[36]
图3 PPy/SWCNT柔性复合薄膜弯曲(a)和拉伸(b)示意图;PPy/SWCNT柔性复合薄膜在弯曲(c)和拉伸(d)后的热电性能[43]
Fig. 3 (a)Schematic diagram of bending (a) and stretching (b) of PPy/SWCNT flexible composite films;thermoelectric properties of PPy/SWCNT flexible composite films after bending (c) and stretching (d)[43]
图4 α-Ag2S的晶体结构[57]
Fig. 4 Crystal structures of α-Ag2S[57]
图5 (a)银硫族化合物的柔韧性-ZT值相图;(b)Ag2S基柔性热电材料的ZT值随温度的变化;(c)Ag2S0.5Se0.5的柔韧性;(d)Ag2S0.5Se0.5制作的柔性热电器件[30]
Fig. 5 (a)The flexibility-ZT value phase diagram of silver chalcogenides;(b)Temperature dependence of ZT value of Ag2S-based FTE materials;(c)Flexibility of Ag2S0.5Se0.5;(d)FTE device fabricated by Ag2S0.5 Se 0.5 30
图6 β-InSe(a)和γ-InSe(b)的晶体结构[68];(c)不同材料的可变形能力;(d)β-InSe单晶的柔韧性[64]
Fig. 6 Crystal structures of β-InSe (a) and γ-InSe (b)[68];(c)deformability of different materials;(d)flexibility of β-InSe single crystals[64]
图7 (a)AgCu(Se,S,Te)伪三元固溶体成分-性能相图;(b)AgCuSe基柔性热电材料的ZT值随温度的变化;(c)AgCuSe0.22S0.08Te0.7的柔韧性;(d)AgCuSe0.22S0.08Te0.7制作的柔性热电器件[73]
Fig. 7 (a)Compositionperformance phase diagram of AgCu(Se,S,Te)pseudoternary solid solutions;(b)temperature dependence of ZT value of AgCuSe-based FTE materials;(c)flexibility of AgCuSe0.22S0.08Te0.7;(d)FTE device fabricated by AgCuSe0.22S0.08 Te 0.7 73
图8 (a)静电纺丝法原理图[83];(b,c)静电纺丝法制备的柔性热电纳米纤维材料[84]
Fig. 8 (a)Schematic diagram of electrospinning[83];(b,c)FTE nanofibers prepared by electrospinning[84]
[1]
Bell L E. Science, 2008, 321(5895): 1457.

doi: 10.1126/science.1158899     pmid: 18787160
[2]
Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J. Nature, 2011, 473(7345): 66.

doi: 10.1038/nature09996    
[3]
Thirugnanasambandam M, Iniyan S, Goic R. Renew. Sustain. Energy Rev., 2010, 14(1): 312.

doi: 10.1016/j.rser.2009.07.014     URL    
[4]
Swarnkar N. JETIR, 2019, 6(5): 131.
[5]
Vining C B. Nat. Mater., 2009, 8(2): 83.

doi: 10.1038/nmat2361    
[6]
Shi X, Chen L, Uher C. Int. Mater. Rev., 2016, 61(6): 379.

doi: 10.1080/09506608.2016.1183075     URL    
[7]
He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder G J. Adv. Mater., 2014, 26(23): 3974.

doi: 10.1002/adma.201400515     URL    
[8]
Zheng X F, Liu C X, Yan Y Y, Wang Q. Renew. Sustain. Energy Rev., 2014, 32: 486.

doi: 10.1016/j.rser.2013.12.053     URL    
[9]
Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke D R. Chem. Mater., 2013, 25(15): 2911.

doi: 10.1021/cm400893e     URL    
[10]
Du Y, Xu J Y, Paul B, Eklund P. Appl. Mater. Today, 2018, 12: 366.
[11]
Zhang X, Zhao L D. J. Materiomics, 2015, 1(2): 92.

doi: 10.1016/j.jmat.2015.01.001     URL    
[12]
Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J. Angew. Chem. Int. Ed., 2016, 55(24): 6826.

doi: 10.1002/anie.v55.24     URL    
[13]
Yang J, Xi L L, Qiu W J, Wu L H, Shi X, Chen L D, Yang J H, Zhang W Q, Uher C, Singh D J. Npj Comput. Mater., 2016, 2: 15015.

doi: 10.1038/npjcompumats.2015.15    
[14]
Hasan M N, Wahid H, Nayan N, Mohamed Ali M S. Int. J. Energy Res., 2020, 44(8): 6170.

doi: 10.1002/er.v44.8     URL    
[15]
Zhang G Q, Kirk B, Jauregui L A, Yang H R, Xu X F, Chen Y P, Wu Y. Nano Lett., 2012, 12(1): 56.

doi: 10.1021/nl202935k     URL    
[16]
Gelbstein Y, Dashevsky Z, Dariel M P. Phys. B Condens. Matter, 2005, 363(1/4): 196.

doi: 10.1016/j.physb.2005.03.022     URL    
[17]
Bathula S, Jayasimhadri M, Dhar A. Mater. Des., 2015, 87: 414.

doi: 10.1016/j.matdes.2015.08.017     URL    
[18]
Wang Y, Yang L, Shi X L, Shi X, Chen L D, Dargusch M S, Zou J, Chen Z G. Adv. Mater., 2019, 31(29): 1807916.
[19]
Zhang L, Shi X L, Yang Y L, Chen Z G. Mater. Today, 2021, 46: 62.

doi: 10.1016/j.mattod.2021.02.016     URL    
[20]
Wu P Q, He Z M, Yang M, Xu J H, Li N, Wang Z M, Li J, Ma T, Lu X, Zhang H, Zhang T. Int. J. Thermophys., 2021, 42(8): 111.

doi: 10.1007/s10765-021-02860-7    
[21]
Mengistie D A, Chen C H, Boopathi K M, Pranoto F W, Li L J, Chu C W. ACS Appl. Mater. Interfaces, 2015, 7(1): 94.

doi: 10.1021/am507032e     URL    
[22]
Kim G H, Shao L, Zhang K, Pipe K P. Nat. Mater., 2013, 12(8): 719.

doi: 10.1038/nmat3635     pmid: 23644522
[23]
Huang D Z, Yao H Y, Cui Y T, Zou Y, Zhang F J, Wang C, Shen H G, Jin W L, Zhu J, Diao Y, Xu W, Di C A, Zhu D B. J. Am. Chem. Soc., 2017, 139(37): 13013.

doi: 10.1021/jacs.7b05344     URL    
[24]
Zhao W Y, Fan S F, Xiao N, Liu D Y, Tay Y Y, Yu C, Sim D, Hng H H, Zhang Q C, Boey F, Ma J, Zhao X B, Zhang H, Yan Q Y. Energy Environ. Sci., 2012, 5(1): 5364.

doi: 10.1039/C1EE01931G     URL    
[25]
Wang H, Hsu J H, Yi S I, Lae Kim S, Choi K, Yang G, Yu C. Adv. Mater., 2015, 27(43): 6855.

doi: 10.1002/adma.201502950     URL    
[26]
MacLeod B A, Stanton N J, Gould I E, Wesenberg D, Ihly R, Owczarczyk Z R, Hurst K E, Fewox C S, Folmar C N, Holman Hughes K, Zink B L, Blackburn J L, Ferguson A J. Energy Environ. Sci., 2017, 10(10): 2168.

doi: 10.1039/C7EE01130J     URL    
[27]
Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y L. Sci. Rep., 2016, 6: 33135.

doi: 10.1038/srep33135     pmid: 27615036
[28]
Jin Q, Jiang S, Zhao Y, Wang D, Qiu J H, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K P, Gao N, Liu C, Cheng H M, Jiang X. Nat. Mater., 2019, 18(1): 62.

doi: 10.1038/s41563-018-0217-z    
[29]
Jiang C, Ding Y F, Cai K F, Tong L, Lu Y, Zhao W Y, Wei P. ACS Appl. Mater. Interfaces, 2020, 12(8): 9646.

doi: 10.1021/acsami.9b21069     URL    
[30]
Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J, Chen L D. Energy Environ. Sci., 2019, 12(10): 2983.

doi: 10.1039/C9EE01777A     URL    
[31]
Liang J S, Qiu P F, Zhu Y, Huang H, Gao Z Q, Zhang Z, Shi X, Chen L D. Research, 2020, 2020: 6591981.
[32]
He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G. Sci. Adv., 2020, 6(15): eaaz8423.
[33]
Yao Q, Wang Q, Wang L M, Wang Y, Sun J, Zeng H R, Jin Z Y, Huang X L, Chen L D. J. Mater. Chem. A, 2014, 2(8): 2634.

doi: 10.1039/C3TA14008C     URL    
[34]
Park J, Lee Y R, Kim M, Kim Y, Tripathi A, Kwon Y W, Kwak J, Woo H Y. ACS Appl. Mater. Interfaces, 2020, 12(1): 1110.

doi: 10.1021/acsami.9b17009     URL    
[35]
Zhang Q, Sun Y M, Xu W, Zhu D B. Adv. Mater., 2014, 26(40): 6829.

doi: 10.1002/adma.v26.40     URL    
[36]
Ju H, Kim J. ACS Nano, 2016, 10(6): 5730.

doi: 10.1021/acsnano.5b07355     URL    
[37]
See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Nano Lett., 2010, 10(11): 4664.

doi: 10.1021/nl102880k     URL    
[38]
Zhang Y H, Heo Y J, Park M, Park S J. Polymers, 2019, 11(1): 167.

doi: 10.3390/polym11010167     URL    
[39]
Yun J S, Choi S, Im S H. Carbon Energy, 2021, 3(5): 667.

doi: 10.1002/cey2.v3.5     URL    
[40]
Dey A, Bajpai O P, Sikder A K, Chattopadhyay S, Shafeeuulla Khan M A. Renew. Sustain. Energy Rev., 2016, 53: 653.

doi: 10.1016/j.rser.2015.09.004     URL    
[41]
Wang L M, Yao Q, Bi H, Huang F Q, Wang Q, Chen L D. J. Mater. Chem. A, 2015, 3(13): 7086.

doi: 10.1039/C4TA06422D     URL    
[42]
Xiang J L, Drzal L T. Polymer, 2012, 53(19): 4202.

doi: 10.1016/j.polymer.2012.07.029     URL    
[43]
Liang L R, Gao C Y, Chen G M, Guo C Y. J. Mater. Chem. C, 2016, 4(3): 526.

doi: 10.1039/C5TC03768A     URL    
[44]
Du Y, Shi Y L, Meng Q F, Shen S Z. Synth. Met., 2020, 261: 116318.

doi: 10.1016/j.synthmet.2020.116318     URL    
[45]
Xu Q, Qu S Y, Ming C, Qiu P F, Yao Q, Zhu C X, Wei T R, He J, Shi X, Chen L D. Energy Environ. Sci., 2020, 13(2): 511.

doi: 10.1039/C9EE03776D     URL    
[46]
Qu S Y, Ming C, Qiu P F, Xu K Q, Xu Q, Yao Q, Lu P, Zeng H R, Shi X, Chen L D. Energy Environ. Sci., 2021, 14(12): 6586.

doi: 10.1039/D1EE02552J     URL    
[47]
Sevinçli H, Cuniberti G. Phys. Rev. B, 2010, 81(11): 113401.
[48]
Ni X X, Liang G, Wang J S, Li B W. Appl. Phys. Lett., 2009, 95(19): 192114.
[49]
Chang P H, Bahramy M S, Nagaosa N, Nikoli©#263; B K. Nano Lett., 2014, 14(7): 3779.

doi: 10.1021/nl500755m     URL    
[50]
Kong D Y, Zhu W, Guo Z P, Deng Y. Energy, 2019, 175: 292.

doi: 10.1016/j.energy.2019.03.060     URL    
[51]
Hu H P, Xia K Y, Zhu T J, Zhao X B. Chinese Journal of Rare Metals, 2020, 45(5): 513.
(胡惠平, 夏凯阳, 朱铁军, 赵新兵. 稀有金属, 2020, 45(5): 513.).
[52]
You J C, Zhan S B, Wen J, Ma Y W, Zhu Z S. Optik, 2020, 217: 164900.

doi: 10.1016/j.ijleo.2020.164900     URL    
[53]
Hong G S, Robinson J T, Zhang Y J, Diao S, Antaris A L, Wang Q B, Dai H J. Angew. Chem. Int. Ed., 2012, 51(39): 9818.

doi: 10.1002/anie.201206059     URL    
[54]
Alharthi S S, Alzahrani A, Razvi M A N, Badawi A, Althobaiti M G. J. Inorg. Organomet. Polym. Mater., 2020, 30(10): 3878.

doi: 10.1007/s10904-020-01519-4    
[55]
Hwang I, Seol M, Kim H, Yong K. Appl. Phys. Lett., 2013, 103(2): 023902.

doi: 10.1063/1.4813445     URL    
[56]
Hebb M H. J. Chem. Phys., 1952, 20(1): 185.

doi: 10.1063/1.1700165     URL    
[57]
Shi X, Chen H Y, Hao F, Liu R H, Wang T, Qiu P F, Burkhardt U, Grin Y, Chen L D. Nat. Mater., 2018, 17(5): 421.

doi: 10.1038/s41563-018-0047-z    
[58]
Jin M, Bai X D, Zhang R L, Zhou L N, Li R B. J. Inorg. Mater., 2022, 37(1): 101.

doi: 10.15541/jim20200653     URL    
[59]
Wang T, Chen H Y, Qiu P F, Shi X, Chen L D. Acta Phys. Sin., 2019, 68(9): 090201.

doi: 10.7498/aps     URL    
[60]
Ferhat M, Nagao J. J. Appl. Phys., 2000, 88(2): 813.

doi: 10.1063/1.373741     URL    
[61]
Pei Y Z, Heinz N A, Snyder G J. J. Mater. Chem., 2011, 21(45): 18256.

doi: 10.1039/c1jm13888j     URL    
[62]
Bindi L, Pingitore N E. Mineral. Mag., 2013, 77(1): 21.

doi: 10.1180/minmag.2013.077.1.03     URL    
[63]
Bindi L, Stanley C J, Spry P G. Mineral. Petrol., 2015, 109(4): 413.

doi: 10.1007/s00710-015-0384-4     URL    
[64]
Wei T R, Jin M, Wang Y C, Chen H Y, Gao Z Q, Zhao K P, Qiu P F, Shan Z W, Jiang J, Li R B, Chen L D, He J, Shi X. Science, 2020, 369(6503): 542.

doi: 10.1126/science.aba9778     URL    
[65]
Han G, Chen Z G, Drennan J, Zou J. Small, 2014, 10(14): 2747.

doi: 10.1002/smll.201400104     URL    
[66]
Zheng Q, Liang C Y, Jiang J Y, Li S F. Phys. Status Solidi RRL Rapid Res. Lett., 2022, 16(3): 2100418.
[67]
Dai Y J, Zhao S X, Han H, Yan Y F, Liu W H, Zhu H, Li L, Tang X, Li Y, Li H, Zhang C J. Front. Mater., 2022, 8: 816821.
[68]
Grimaldi I, Gerace T, Pipita M M, Perrotta I D, Ciuchi F, Berger H, Papagno M, Castriota M, PacilÉ D. Solid State Commun., 2020, 311: 113855.
[69]
Mosca D H, Mattoso N, Lepienski C M, Veiga W, Mazzaro I, Etgens V H, Eddrief M. J. Appl. Phys., 2002, 91(1): 140.

doi: 10.1063/1.1423391     URL    
[70]
Shi H N, Wang D Y, Xiao Y, Zhao L D. Aggregate, 2021, 2(4): e92.
[71]
Hong M, Chen Z G, Zou J. Chin. Phys. B, 2018, 27(4): 048403.
[72]
Zhang B, Wu H, Peng K L, Shen X C, Gong X N, Zheng S K, Lu X, Wang G Y, Zhou X Y. Chin. Phys. B, 2021, 30(7): 078101.
[73]
Yang Q Y, Yang S Q, Qiu P F, Peng L M, Wei T R, Zhang Z, Shi X, Chen L D. Science, 2022, 377(6608): 854.

doi: 10.1126/science.abq0682     URL    
[74]
Shi D T, Wang R P, Wang G X, Li C, Shen X, Nie Q H. Vacuum, 2017, 145: 347.

doi: 10.1016/j.vacuum.2017.09.007     URL    
[75]
Shen S F, Zhu W, Deng Y, Zhao H Z, Peng Y C, Wang C J. Appl. Surf. Sci., 2017, 414: 197.

doi: 10.1016/j.apsusc.2017.04.074     URL    
[76]
Singkaselit K, Sakulkalavek A, Sakdanuphab R. Adv. Nat. Sci: Nanosci. Nanotechnol., 2017, 8(3): 035002.
[77]
Goncalves L M, Alpuim P, Min G, Rowe D M, Couto C, Correia J H. Vacuum, 2008, 82(12): 1499.

doi: 10.1016/j.vacuum.2008.03.076     URL    
[78]
Goncalves L M, Alpuim P, Rolo A G, Correia J H. Thin Solid Films, 2011, 519(13): 4152.

doi: 10.1016/j.tsf.2011.01.395     URL    
[79]
Goncalves L M, Couto C, Alpuim P, Rolo A G, Völklein F, Correia J H. Thin Solid Films, 2010, 518(10): 2816.

doi: 10.1016/j.tsf.2009.08.038     URL    
[80]
Wang Y Y, Cai K F, Shen S, Yao X. Synth. Met., 2015, 209: 480.

doi: 10.1016/j.synthmet.2015.08.034     URL    
[81]
Chatterjee K, Mitra M, Kargupta K, Ganguly S, Banerjee D. Nanotechnology, 2013, 24(21): 215703.
[82]
Bhardwaj N, Kundu S C. Biotechnol. Adv., 2010, 28(3): 325.

doi: 10.1016/j.biotechadv.2010.01.004     pmid: 20100560
[83]
Masoumi S, O’Shaughnessy S, Pakdel A. Nano Energy, 2022, 92: 106774.
[84]
Li J Y, Dong C S, Hu J L, Liu J, Liu Y C. ACS Appl. Electron. Mater., 2021, 3(8): 3641.

doi: 10.1021/acsaelm.1c00547     URL    
[85]
Akram R, Khan J S, Qamar Z, Rafique S, Hussain M, Kayani F B. J. Mater. Sci., 2022, 57(5): 3309.

doi: 10.1007/s10853-021-06750-z    
[86]
Kim S J, We J H, Cho B J. Energy Environ. Sci., 2014, 7(6): 1959.

doi: 10.1039/c4ee00242c     URL    
[87]
Yabuki H, Yonezawa S, Eguchi R, Takashiri M. Sci. Rep., 2020, 10: 17031.

doi: 10.1038/s41598-020-73808-4    
[88]
Patil N S, Sargar A M, Mane S R, Bhosale P N. Mater. Chem. Phys., 2009, 115(1): 47.

doi: 10.1016/j.matchemphys.2008.11.026     URL    
[89]
Zhang T, Li K W, Zhang J, Chen M, Wang Z, Ma S Y, Zhang N, Wei L. Nano Energy, 2017, 41: 35.

doi: 10.1016/j.nanoen.2017.09.019     URL    
No related articles found!
阅读次数
全文


摘要

柔性热电材料的研究进展及应用