English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 407-420 DOI: 10.7536/PC220902 前一篇   后一篇

• 综述 •

钠基-海水电池的发展:“关键部件及挑战”

牛文辉1,2,3, 张达1,2,3,*(), 赵振刚1,2,3, 杨斌1,2,3, 梁风1,2,3,*()   

  1. 1.昆明理工大学云南省有色金属真空冶金重点实验室 昆明 650093
    2.昆明理工大学真空冶金国家工程研究中心 昆明 650093
    3.昆明理工大学冶金与能源工程学院 昆明 650093
  • 收稿日期:2022-09-02 修回日期:2023-01-03 出版日期:2023-03-24 发布日期:2023-02-20
  • 作者简介:

    张达 昆明理工大学讲师, 2021年博士毕业于昆明理工大学冶金与能源工程学院,主要从事纳米材料的等离子体制备与改性、新能源材料与器件等方面的研究。

    梁风 昆明理工大学教授,博士生导师,日本九州大学客座教授。博士毕业于日本东京工业大学。入选国家人力资源与社会保障部资助高层次留学回国人才计划、云南省高端科技人才、昆明理工大学首批学术青蓝计划等多项人才计划。主要从事高能量密度储能器件(金属空气电池、金属二氧化碳电池等),等离子体制备和改性纳米材料等方面的研究。

  • 基金资助:
    国家自然科学基金项目(12175089); 国家自然科学基金项目(12205127); 云南省重点研发计划项目(202103AF140006); 云南省科技厅应用基础研究计划项目(202001AW070004)

Development of Na-Based Seawater Batteries: “Key Components and Challenges”

Niu Wenhui1,2,3, Zhang Da1,2,3(), Zhao Zhengang1,2,3, Yang Bin1,2,3, Liang Feng1,2,3()   

  1. 1. Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology,Kunming 650093, China
    2. National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology,Kunming 650093, China
    3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received:2022-09-02 Revised:2023-01-03 Online:2023-03-24 Published:2023-02-20
  • Contact: *e-mail: liangfeng@kust.edu.cn (Feng Liang); d912080781@163.com (Da Zhang)
  • Supported by:
    National Natural Science Foundation of China(12175089); National Natural Science Foundation of China(12205127); Key Research and Development Program of Yunnan Province(202103AF140006); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004)

钠基-海水电池因具有环境友好、能量密度高和海水储量丰富且易得等优势,有望成为新一代储能器件。其原理是以海水为电解液,通过氧化还原反应实现化学能与电能的转换。本文概述了钠基-海水电池的电化学原理、电池结构设计及优化策略;回顾了钠基-海水电池的最新研究进展;最后,讨论了钠基-海水电池性能提升和商业化需要克服的挑战,并展望了该电池未来的发展方向。该论文为钠基-海水电池的发展提供理论指导,进而促进钠基-海水电池为深海能源供应和极端环境能源保障等国家重大需求提供支撑。

Na-based seawater batteries are expected to become a new-generation of energy storage device due to its advantages of environmental friendliness, high energy density, and abundant and easy availability of seawater. Its working principle is that the conversion between the chemical energy and the electrical energy is achieved through redox reaction when seawater is considered as the electrolyte. In this review, the electrochemical principle, and design and optimization strategy of battery structure of Na-based seawater batteries are summarized. The latest research progress of Na-based seawater batteries is reviewed. Finally, the challenges to overcome the performance improvement and commercialization of Na-based seawater batteries are discussed, and the future development directions of the batteries are forecasted. The review provides the theoretical guidance for the development of Na-based seawater batteries, and then promotes Na-based seawater batteries support for major national needs such as the deep-sea energy supply and extremely environmental-energy source.

Contents

1 Introduction

2 The introduction of Na-based seawater battery

2.1 The concept of Na-based seawater battery

2.2 The electrochemical principle of Na-based seawater battery

2.3 The characteristics of Na-based seawater battery

2.4 Battery design and optimization

3 Key components and challenges of Na-based seawater battery

3.1 Anode

3.2 Organic electrolyte

3.3 Solid electrolyte

3.4 Catalysts

4 Conclusion and prospect

()
图1 钠基-海水电池工作示意图
Fig. 1 Working diagram of Na-based seawater battery
图2 模拟海水的热力学Pourbaix图(a)和动力学Pourbaix图(b)[16]
Fig. 2 (a) Simulated Pourbaix diagram of seawater about thermodynamics. (b) Simulated Pourbaix diagram of seawater about kinetics[16]
图3 (a)袋式电池[13],(b)纽扣式电池,(c)矩形电池,(d)棱柱形电池实物图[51]
Fig. 3 The physical map of (a) pouch cell[13], (b) coin cell, (c) rectangular cell, and (d) prismatic cell[51]
图4 (a)Cu集流体上钠枝晶生长的延时照片,黄色圆圈表示钠枝晶出现;(b)电池设计和钠枝晶生长示意图;(c)Cu和(d)Gr/Cu集流体的俯视扫描电子显微镜图像,插图表示集流体的示意图;(e)Gr/Cu集流体的高分辨率扫描隧道显微镜表面图像;(f)Gr/Cu集流体上钠枝晶生长的延时照片,黄色圆圈表示钠枝晶出现;(g)以Gr/Cu(红线)和Cu(黑线)为集流体的计时电位法图;(h)以Cu和Gr/Cu为集流体的钠基-海水电池充放电结构示意图[57]
Fig. 4 (a) Time-lapse photographs of Na dendrite growth on the Cu current collector, the yellow circle shows the appearance of Na dendrite. (b) Schematic of the battery design and Na dendrite growth, top-view scanning electron microscope (SEM) images of (c) Cu and (d) Gr/Cu current collectors, the insets represent current collectors. (e) High resolution scanning tunneling microscope (STM) topography image of Gr/Cu current collector. (f) Time-lapse photographs of Na dendrite growth on the Gr/Cu current collector. the yellow circle shows the appearance of Na dendrite. (g) Chronopotentiometry plots of Gr/Cu (red line) and Cu (black line) current collectors. (h) Schematic diagram of charge-discharge of Na-base seawater battery with Cu and Gr/Cu current collectors[57]
图5 (a)Na-BP-DEGDME阳极电池充放电过程示意图;(b)Na-BP-DEGDME阳极钠基-海水电池循环性能图[59];(c)在0.01 mA·cm-2下,Na-BP-TEGDME阳极电池的循环性能和能量效率图;(d)在0.01 mA·cm-2下,Na-BP-TEGDME阳极电池的恒电流循环曲线;(e)使用不同催化剂和Na-BP-TEGDME阳极电池的能量密度图[35]
Fig. 5 (a) Schematic diagram of charging and discharging process of Na-BP-DEGDME anode battery. (b) Cycle performance of Na-based seawater battery with Na-BP-DEGDME anode[59]. (c) Cycling performance and energy efficiency of battery with Na-BP-TEGDME anode at 0.01 mA·cm-2. (d) Galvanostatic cycling of battery with Na-BP-TEGDME anode at 0.01 mA·cm-2. (e) Power density of batteries with different catalysts and Na-BP-TEGDME anode[35]
表1 使用有机电解液对应的钠基-海水电池电化学性能的对比
Table 1 Comparison of electrochemical performance of Na-based seawater batteries with organic electrolyte
图6 海水电池使用两种电解液(1 M NaCF3SO3溶于TEGDME,1 M NaClO4溶于EC/PC)的(a)充/放电曲线和(b)循环性能[63];(c)使用电解液ILE-EC的钠基-海水电池容量保持率[46];(d)使用电解液ILE-EC和1 M NaCF3SO3溶于TEGDME的钠基-海水电池循环性能[56]
Fig. 6 (a) Charge-discharge curves and (b) Cycling performance of the seawater battery with 1 M NaCF3SO3 in TEGDME and 1 M NaClO4 in EC/PC electrolyte[63]. (c) Capacity retention of Na-based seawater battery with ILE-EC electrolyte[46]. (d) Cycling performance of Na-based seawater battery with ILE-EC and 1 M NaCF3SO3 in TEGDME electrolyte[56]
图7 (a)β-Al2O3和β″-Al2O3固体电解质的晶体结构[75];(b)钠基-海水电池循环前后β″-Al2O3固体电解质的XRD图[43];(c)NASICON(Na3Zr2Si2PO12)固体电解质的晶体结构和离子迁移路径[83];(d)NASICON固体电解质在海水浸泡前后的XRD图和SEM图[13];(e)NASICON固体电解质在不同pH值溶液中浸泡不同时间的离子电导率;(f)NASICON固体电解质在不同pH值酸性溶液中的腐蚀机理[86]
Fig. 7 (a) Crystal structures of the β-Al2O3,and β″-Al2O3 solid electrolytes[75]. (b) X ray diffraction (XRD) patterns of β″-Al2O3 solid electrolytes before and after cycling of Na-based seawater battery[43]. (c) Crystal structures and ion transport paths of NASICON (Na3Zr2Si2PO12) solid electrolytes[83]. (d) XRD patterns and SEM images of NASICON solid electrolytes before and after immersion in seawater[13]. (e) Ionic conductivity of NASICON solid electrolytes with immersion different time in solutions with different pH values. (f) Corrosion mechanism of NASICON solid electrolyte in acidic solutions with different pH values[86]
表2 不同催化剂对应的钠基-海水电池电化学性能对比
Table 2 Comparison of electrochemical performance of Na-based seawater batteries with different catalyst
图8 (a)在0.01 mA·cm-2下,使用PC催化剂的钠基-海水半电池充放电曲线。插图为PC的SEM图[91];(b)在50 mA· g a n o d e - 1下,以PPC为催化剂的钠基-海水电池循环性能[93];(c)在0.01 mA·cm-2下,以CMO为催化剂的钠基-海水半电池充放电曲线,插图为PPC的SEM图[95];(d)在0.1 mA·cm-2下,使用Co3V2O8催化剂的钠基-海水电池循环性能[96];(e)在0.01 mA·cm-2下,使用S-rGO-CNT-Co催化剂的钠基-海水电池充放电曲线,插图为S-rGO-CNT-Co的SEM图[100];(f)在20 mA·g-1下,使用PPy+Co3O4@CF催化剂的钠基-海水电池循环性能[101]
Fig. 8 (a) Charge-discharge curves of Na-based seawater half-battery with PC catalyst at 0.01 mA·cm-2. Inset is SEM image of PC[91]. (b) Cycling performance of Na-based seawater battery with PPC catalyst at 50 mA· g a n o d e - 1 [93]. (c) Charge-discharge curves of Na-based seawater half-battery with CMO catalyst at 0.01 mA·cm-2. Inset is SEM image of CMO[95]. (d) Cycling performance of Na-based seawater battery with Co3V2O8 catalyst at 0.1 mA·cm-2[96]. (e) Charge-discharge curves of Na-based seawater battery with S-rGO-CNT-Co catalyst at 0.01 mA·cm-2. Inset is SEM image of S-rGO-CNT-Co[100]. (f) Cycling performance of Na-based seawater battery with PPy+Co3O4@CF catalyst at 20 mA·g-1[101]
[1]
Ellabban O, Abu-Rub H, Blaabjerg F. Renew. Sustain. Energy Rev., 2014, 39: 748.

doi: 10.1016/j.rser.2014.07.113     URL    
[2]
Hunt C T. Chem. Eng. News Archive, 2008, 86(42): 66.
[3]
Zhang Y J, Senthilkumar S T, Park J, Park J, Kim Y. Batter. Supercaps, 2018, 1(1): 6.

doi: 10.1002/batt.v1.1     URL    
[4]
Vaalma C, Buchholz D, Weil M, Passerini S. Nat. Rev. Mater., 2018, 3(4): 18013.

doi: 10.1038/natrevmats.2018.13     URL    
[5]
Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1(4): 16013.

doi: 10.1038/natrevmats.2016.13    
[6]
Huppes G, Ishikawa M, Kramer G J. J. Ind. Ecol., 2011, 15(5): 677.

doi: 10.1111/j.1530-9290.2011.00380.x     URL    
[7]
Huang Y M, Dong Y H, Li S, Lee J, Wang C, Zhu Z, Xue W J, Li Y, Li J. Adv. Energy Mater., 2021, 11(2): 2000997.
[8]
Huang C F, Ji Q Q, Zhang H L, Wang Y T, Wang S M, Liu X H, Guo Y M, Zhang C H. J. Colloid Interface Sci., 2022, 606: 654.

doi: 10.1016/j.jcis.2021.08.046     URL    
[9]
Weber A. Fuel Cells, 2021, 21(5): 440.
[10]
Chang S L, Hou M J, Xu B W, Liang F, Qiu X C, Yao Y C, Qu T, Ma W H, Yang B, Dai Y N, Chen K F, Xue D F, Zhao H P, Lin X T, Poon F, Lei Y, Sun X L. Adv. Funct. Mater., 2021, 31(22): 2011151.
[11]
Wu Y Q, Qiu X C, Liang F, Zhang Q K, Koo A, Dai Y N, Lei Y, Sun X L. Appl. Catal. B Environ., 2019, 241: 407.

doi: 10.1016/j.apcatb.2018.09.063     URL    
[12]
Kim J K, Mueller F, Kim H, Jeong S, Park J S, Passerini S, Kim Y. ChemSusChem, 2016, 9(1): 1.

doi: 10.1002/cssc.201501673     URL    
[13]
Hwang S M, Park J S, Kim Y, Go W, Han J, Kim Y, Kim Y,. Adv. Mater., 2019, 31(20): 1804936.
[14]
Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. ChemSusChem, 2016, 9(9): 962.

doi: 10.1002/cssc.201501581     pmid: 27010750
[15]
Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S. J. Power Sources, 2011, 196(16): 6835.

doi: 10.1016/j.jpowsour.2010.09.104     URL    
[16]
Yu J, Li B Q, Zhao C X, Zhang Q. Energy Environ. Sci., 2020, 13(10): 3253.

doi: 10.1039/D0EE01617A     URL    
[17]
Son M, Park S, Kim N, Angeles A T, Kim Y, Cho K H. Adv. Sci., 2021, 8(18): 2101289.
[18]
Meng F L, Zhong H X, Bao D, Yan J M, Zhang X B. J. Am. Chem. Soc., 2016, 138(32): 10226.

doi: 10.1021/jacs.6b05046     URL    
[19]
Stamenkovic V, M Markovic N, Ross P N Jr. J. Electroanal. Chem., 2001, 500(1/2): 44.

doi: 10.1016/S0022-0728(00)00352-1     URL    
[20]
Arruda T M, Shyam B, Ziegelbauer J M, Mukerjee S, Ramaker D E. J. Phys. Chem. C, 2008, 112(46): 18087.

doi: 10.1021/jp8067359     URL    
[21]
Zhang L, Mukerjee S. J. Electrochem. Soc., 2006, 153(6): A1062.

doi: 10.1149/1.2180715     URL    
[22]
Lane R F, Hubbard A T. J. Phys. Chem., 1975, 79(8): 808.

doi: 10.1021/j100575a008     URL    
[23]
Wright J, Colling A. 1995, 29.
[24]
Deng J, Bae C, Marcicki J, Masias A, Miller T. Nat. Energy, 2018, 3(4): 261.

doi: 10.1038/s41560-018-0122-3    
[25]
Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Nat. Chem., 2011, 3(7): 546.

doi: 10.1038/nchem.1069     pmid: 21697876
[26]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

doi: 10.1038/nmat3191    
[27]
Lu X F, Xia B Y, Zang S Q, David Lou X W. Angew. Chem. Int. Ed., 2020, 59(12): 4634.

doi: 10.1002/anie.v59.12     URL    
[28]
Deng Y J, Luo J M, Chi B, Tang H B, Li J, Qiao X C, Shen Y J, Yang Y J, Jia C M, Rao P, Liao S J, Tian X L. Adv. Energy Mater., 2021, 11(37): 2101222.
[29]
Schmidt T J, Paulus U A, Gasteiger H A, Behm R J. J. Electroanal. Chem., 2001, 508(1/2): 41.

doi: 10.1016/S0022-0728(01)00499-5     URL    
[30]
Wu X Y, Han X P, Ma X Y, Zhang W, Deng Y D, Zhong C, Hu W B. ACS Appl. Mater. Interfaces, 2017, 9(14): 12574.

doi: 10.1021/acsami.6b16602     URL    
[31]
Shen F C, Wang Y, Tang Y J, Li S L, Wang Y R, Dong L Z, Li Y F, Xu Y, Lan Y Q. ACS Energy Lett., 2017, 2(6): 1327.

doi: 10.1021/acsenergylett.7b00229     URL    
[32]
McCrory C C L, Jung S, Peters J C, Jaramillo T F. J. Am. Chem. Soc., 2013, 135(45): 16977.

doi: 10.1021/ja407115p     URL    
[33]
Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Chem. Rev., 2018, 118(5): 2302.

doi: 10.1021/acs.chemrev.7b00488     URL    
[34]
Huang Z F, Song J J, Du Y H, Xi S B, Dou S, Nsanzimana J M V, Wang C, Xu Z J, Wang X. Nat. Energy, 2019, 4(4): 329.
[35]
Kang Y, Wang S, Zhu S Q, Gao H X, Hui K S, Yuan C Z, Yin H, Bin F, Wu X L, Mai W J, Zhu L, Hu M C, Liang F, Chen F M, Hui K N. Appl. Catal. B Environ., 2021, 285: 119786.

doi: 10.1016/j.apcatb.2020.119786     URL    
[36]
Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. Nat. Energy, 2016, 1: 15006.

doi: 10.1038/nenergy.2015.6    
[37]
Meier J C, Galeano C, Katsounaros I, Witte J, Bongard H J, Topalov A A, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer K J J. Beilstein J. Nanotechnol., 2014, 5: 44.

doi: 10.3762/bjnano.5.5     URL    
[38]
Job N, Chatenet M, Berthon-Fabry S, Hermans S, Maillard F. J. Power Sources, 2013, 240: 294.

doi: 10.1016/j.jpowsour.2013.03.188     URL    
[39]
Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. ACS Nano, 2017, 11(1): 347.

doi: 10.1021/acsnano.6b05914     URL    
[40]
Guo L, Rueping M. Acc. Chem. Res., 2018, 51(5): 1185.

doi: 10.1021/acs.accounts.8b00023     URL    
[41]
Zhang D, Zhao H P, Liang F, Ma W H, Lei Y. J. Power Sources, 2021, 493: 229722.
[42]
Lu L, Zheng Y, Yang R, Kakimov A, Li X. Mater. Today Chem., 2021, 21: 100488.
[43]
Kim Y, Kim H, Park S, Seo I, Kim Y,. Electrochimica Acta, 2016, 191: 1.

doi: 10.1016/j.electacta.2016.01.054     URL    
[44]
Kim Y, Varzi A, Mariani A, Kim G T, Kim Y, Passerini S. Adv. Energy Mater., 2021, 11(38): 2102061.
[45]
Gao H X, Zhu S Q, Kang Y, Dinh D A, Hui K S, Bin F, Fan X, Chen F M, Mahmood A, Geng J X, Cheong W C M, Hui K N. ACS Appl. Energy Mater., 2022, 5(2): 1662.

doi: 10.1021/acsaem.1c03073     URL    
[46]
Kim Y, Kim G T, Jeong S, Dou X W, Geng C X, Kim Y, Passerini S. Energy Storage Mater., 2019, 16: 56.
[47]
Yin W W, Fu Z W. ChemCatChem, 2017, 9(9): 1545.

doi: 10.1002/cctc.v9.9     URL    
[48]
Kim Y, Ha K H, Oh S M, Lee K T. Chem. Eur. J., 2014, 20(38): 11980.

doi: 10.1002/chem.v20.38     URL    
[49]
Han J, Hwang S M, Go W, Senthilkumar S T, Jeon D, Kim Y. J. Power Sources, 2018, 374: 24.

doi: 10.1016/j.jpowsour.2017.11.022     URL    
[50]
Kim Y, Harzandi A M, Lee J, Choi Y, Kim Y,. Adv. Sustainable Syst., 2021, 5(1): 2000106.
[51]
Kim Y, Shin K, Jung Y, Lee W G, Kim Y,. Adv. Sustain. Syst., 2022, 6(6): 2100484.
[52]
Wang H, Yu D D, Kuang C W, Cheng L W, Li W, Feng X L, Zhang Z, Zhang X B, Zhang Y. Chem, 2019, 5(2): 313.

doi: 10.1016/j.chempr.2018.11.005    
[53]
Sun J, Lee H W, Pasta M, Yuan H T, Zheng G Y, Sun Y M, Li Y Z, Cui Y. Nat. Nanotechnol., 2015, 10(11): 980.

doi: 10.1038/nnano.2015.194    
[54]
Zhao C L, Lu Y X, Yue J M, Pan D, Qi Y R, Hu Y S, Chen L Q. J. Energy Chem., 2018, 27(6): 1584.

doi: 10.1016/j.jechem.2018.03.004     URL    
[55]
Hong Y S, Li N, Chen H S, Wang P, Song W L, Fang D N. Energy Storage Mater., 2018, 11: 118.
[56]
Senthilkumar S T, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y,. J. Mater. Chem. A, 2019, 7(40): 22803.

doi: 10.1039/c9ta08321a    
[57]
Kim D H, Choi H, Hwang D Y, Park J, Kim K S, Ahn S, Kim Y, Kwak S K, Yu Y J, Kang S J. J. Mater. Chem. A, 2018, 6(40): 19672.

doi: 10.1039/C8TA07610C     URL    
[58]
Liang F, Qiu X C, Zhang Q K, Kang Y, Koo A, Hayashi K, Chen K F, Xue D F, Hui K N, Yadegari H, Sun X L. Nano Energy, 2018, 49: 574.

doi: 10.1016/j.nanoen.2018.04.074     URL    
[59]
Kim Y, Jung J, Yu H, Kim G T, Jeong D, Bresser D, Kang S J, Kim Y, Passerini S. Adv. Funct. Mater., 2020, 30(24): 2001249.
[60]
Lim D H, Dong C, Kim H W, Bae G H, Choo K, Cho G B, Kim Y, Jin B, Kim J K. Mater. Today Energy, 2021, 21: 100805.
[61]
Luo W, Shen F, Bommier C, Zhu H L, Ji X L, Hu L B. Acc. Chem. Res., 2016, 49(2): 231.

doi: 10.1021/acs.accounts.5b00482     URL    
[62]
Hu Z, Liu Q N, Chou S L, Dou S X. Adv. Mater., 2017, 29(48): 1700606.
[63]
Kim H, Park J S, Sahgong S H, Park S, Kim J K, Kim Y. J. Mater. Chem. A, 2014, 2(46): 19584.

doi: 10.1039/C4TA04937C     URL    
[64]
Lee S, Cho I Y, Kim D, Park N K, Park J, Kim Y, Kang S J, Kim Y, Hong S Y. ChemSusChem, 2020, 13(9): 2220.

doi: 10.1002/cssc.v13.9     URL    
[65]
Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8(8): 621.

doi: 10.1038/nmat2448    
[66]
Watanabe M, Thomas M L, Zhang S G, Ueno K, Yasuda T, Dokko K. Chem. Rev., 2017, 117(10): 7190.

doi: 10.1021/acs.chemrev.6b00504     URL    
[67]
Kim Y, Hwang S M, Yu H, Kim Y,. J. Mater. Chem. A, 2018, 6(7): 3046.

doi: 10.1039/C7TA10668H     URL    
[68]
Kim J K, Mueller F, Kim H, Bresser D, Park J S, Lim D H, Kim G T, Passerini S, Kim Y. NPG Asia Mater., 2014, 6(11): e144.

doi: 10.1038/am.2014.106    
[79]
Farrington G C, Briant J L. Mater. Res. Bull., 1978, 13(8): 763.

doi: 10.1016/0025-5408(78)90038-7     URL    
[80]
Harbach F. Solid State Ion., 1983, 9/10: 231.

doi: 10.1016/0167-2738(83)90239-4     URL    
[81]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.

doi: 10.1016/0025-5408(76)90077-5     URL    
[82]
Park H, Jung K, Nezafati M, Kim C S, Kang B. ACS Appl. Mater. Interfaces, 2016, 8(41): 27814.

doi: 10.1021/acsami.6b09992     URL    
[83]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.
[84]
Senthilkumar S T, Han J, Park J, Hwang S M, Jeon D, Kim Y. Energy Storage Mater., 2018, 12: 324.
[85]
Hwang S M, Kim J, Kim Y, Kim Y,. J. Mater. Chem. A, 2016, 4(46): 17946.

doi: 10.1039/C6TA07838A     URL    
[86]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.

doi: 10.1021/acsami.1c07601     URL    
[87]
Kim K, Hwang S M, Park J S, Han J, Kim J, Kim Y. J. Power Sources, 2016, 313: 46.

doi: 10.1016/j.jpowsour.2016.02.060     URL    
[88]
Sahgong S H, Senthilkumar S T, Kim K, Hwang S M, Kim Y. Electrochem. Commun., 2015, 61: 53.

doi: 10.1016/j.elecom.2015.10.004     URL    
[89]
Yang X C, Su F M, Hou M J, Zhang D, Dai Y N, Liang F. Dalton Trans., 2021, 50(20): 7041.

doi: 10.1039/D1DT00807B     URL    
[90]
Ping H, Tao Z, Jie J, Zhou H S. J. Phys. Chem. Lett., 2016, 7(7): 1267.

doi: 10.1021/acs.jpclett.6b00080     pmid: 26977713
[91]
Senthilkumar S T, Park S O, Kim J, Hwang S M, Kwak S K, Kim Y. J. Mater. Chem. A, 2017, 5(27): 14174.

doi: 10.1039/C7TA03298F     URL    
[92]
Li W J, Han C, Zhang K, Chou S L, Dou S X. J. Mater. Chem. A, 2021, 9(11): 6671.

doi: 10.1039/D1TA00203A     URL    
[93]
Kim J, Park J, Lee J, Lim W G, Jo C, Lee J,. Adv. Funct. Mater., 2021, 31(22): 2010882.
[94]
Zhang J T, Zhao Z H, Xia Z H, Dai L M. Nat. Nanotechnol., 2015, 10(5): 444.

doi: 10.1038/nnano.2015.48    
[95]
Abirami M, Hwang S M, Yang J C, Senthilkumar S T, Kim J, Go W S, Senthilkumar B, Song H K, Kim Y. ACS Appl. Mater. Interfaces, 2016, 8(48): 32778.

doi: 10.1021/acsami.6b10082     URL    
[69]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.

doi: 10.1016/j.joule.2018.07.028     URL    
[70]
Tang B, Jaschin P W, Li X, Bo S H, Zhou Z. Mater. Today, 2020, 41: 200.

doi: 10.1016/j.mattod.2020.08.016     URL    
[71]
Yao Y F Y, Kummer J T. J. Inorg. Nucl. Chem., 1967, 29(9): 2453.

doi: 10.1016/0022-1902(67)80301-4     URL    
[72]
Whittingham, Stanley M. J. Chem. Phys., 1971, 54(1): 414.

doi: 10.1063/1.1674623     URL    
[73]
Kim K K, Mundy J N, Chen W K. J. Phys. Chem. Solids, 1979, 40(10): 743.

doi: 10.1016/0022-3697(79)90157-4     URL    
[74]
La Rosa D, Monforte G, D’Urso C, Baglio V, Antonucci V, Aricò A S. ChemSusChem, 2010, 3(12): 1390.

doi: 10.1002/cssc.201000223     URL    
[75]
Chi C, Katsui H, Goto T. Ceram. Int., 2017, 43(1): 1278.

doi: 10.1016/j.ceramint.2016.10.077     URL    
[76]
Lu X C, Xia G G, Lemmon J P, Yang Z G. J. Power Sources, 2010, 195(9): 2431.

doi: 10.1016/j.jpowsour.2009.11.120     URL    
[77]
Will F G. J. Electrochem. Soc., 1976, 123(6): 834.

doi: 10.1149/1.2132943    
[78]
Flor G, Marini A, Massarotti V, Villa M. Solid State Ion., 1981, 2(3): 195.

doi: 10.1016/0167-2738(81)90179-X     URL    
[96]
Shin K H, Park J, Park S K, Nakhanivej P, Hwang S M, Kim Y, Park H S. J. Ind. Eng. Chem., 2019, 72: 250.

doi: 10.1016/j.jiec.2018.12.025     URL    
[97]
Liardet L, Hu X L. ACS Catal., 2018, 8(1): 644.

doi: 10.1021/acscatal.7b03198     URL    
[98]
Pletcher D, Li X H, Price S W T, Russell A E, Sönmez T, Thompson S J. Electrochimica Acta, 2016, 188: 286.

doi: 10.1016/j.electacta.2015.10.020     URL    
[99]
Mahmood J, Li F, Kim C, Choi H J, Gwon O, Jung S M, Seo J M, Cho S J, Ju Y W, Jeong H Y, Kim G, Baek J B. Nano Energy, 2018, 44: 304.

doi: 10.1016/j.nanoen.2017.11.057     URL    
[100]
Suh D H, Park S K, Nakhanivej P, Kim Y, Hwang S M, Park H S. J. Power Sources, 2017, 372: 31.

doi: 10.1016/j.jpowsour.2017.10.056     URL    
[101]
Kim C, Kim S, Kwon O, Kim J, Kim G. ChemElectroChem, 2019, 6(1): 2.

doi: 10.1002/celc.v6.1     URL    
[102]
Zhang Y J, Park J S, Senthilkumar S T, Kim Y. J. Power Sources, 2018, 400: 478.

doi: 10.1016/j.jpowsour.2018.08.044     URL    
[103]
Khan Z, Park S O, Yang J C, Park S, Shanker R, Song H K, Kim Y, Kwak S K, Ko H. J. Mater. Chem. A, 2018, 6(47): 24459.

doi: 10.1039/C8TA10327E     URL    
[104]
Dien Kha Tu N, Park S O, Park J, Kim Y, Kwak S K, Kang S J. ACS Appl. Energy Mater., 2020, 3(2): 1602.

doi: 10.1021/acsaem.9b02087     URL    
[105]
Kim S, Ji S, Yang H, Son H, Choi H, Kang J, Li O L. Appl. Catal. B Environ., 2022, 310: 121361.

doi: 10.1016/j.apcatb.2022.121361     URL    
No related articles found!