English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2348-2361 DOI: 10.7536/PC201052 前一篇   后一篇

• 综述 •

金属氧化物室温气敏材料的结构调控及传感机理

金士成, 闫爽*()   

  1. 大连工业大学纺织与材料工程学院 大连 116034
  • 收稿日期:2020-02-16 修回日期:2020-05-28 出版日期:2021-12-20 发布日期:2020-12-28
  • 通讯作者: 闫爽
  • 基金资助:
    辽宁省自然科学基金计划指导计划项目(2019-ZD-0129)

Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing

Shicheng Jin, Shuang Yan()   

  1. College of Textile and Materials Engineering, Dalian Polytechnic University,Dalian 116034, China
  • Received:2020-02-16 Revised:2020-05-28 Online:2021-12-20 Published:2020-12-28
  • Contact: Shuang Yan
  • Supported by:
    the Natural Science Foundation of Liaoning Province(2019-ZD-0129)

室温气敏材料能耗低、稳定性好、安全性高,并且有助于简化传感器的器件结构,具有很好的实际应用前景。开发具有优异室温传感性能的气敏材料成为近年来传感领域的研究热点。金属氧化物半导体材料来源广泛、环境友好、结构调控灵活,在室温气体传感性能方面取得一定的进展。本文介绍了金属氧化物气敏材料的发展历程及气体传感机理,详述了各种具有室温气敏性能的金属氧化物纳米结构,重点讨论构建金属氧化物室温传感性能的有效策略和传感机制,并对室温传感材料的未来发展进行了展望。

A gas sensor working at room temperature shows great potential in practical applications due to its lower energy consumption, good stability, high security and ease of miniaturization. World-wide efforts have been devoted to explore materials with excellent room-temperature gas sensing performance. Metal oxide semiconductor materials are widely sourced, environmentally friendly and flexible in structure control. Research of metal oxide semiconductor based sensors operated at room temperature has made significant progress recently. In this paper, the development process and working principle of metal oxide gas sensors are introduced, various metal oxide nanostructures in regard to their room-temperature gas sensing properties are comprehensively reviewed. Particular emphasis is given to those effective strategies for constructing room-temperature sensors and their sensing mechanism. Finally, some future research perspectives in the field of room-temperature sensors are discussed as well.

Contents

1 Introduction

2 Development process of MOS gas sensors

3 Working principle of MOS gas sensors

4 Construction of nanostructured MOS gas sensors with room?temperature sensing performance

4.1 Pure metal oxide nanostructures

4.2 Metal oxide hetero? or composite?nanostructures

4.3 UV assisted gas sensing material

5 Conclusion and outlook

()
图1 n型金属氧化物气敏材料检测原理示意图
Fig.1 Schematic Diagram of Detection Principle of n-type Metal Oxide Gas Sensitive Material
图2 SnO2晶粒尺寸对气体传感灵敏度的影响(工作温度:300 ℃)[35]
Fig.2 Influence of Crystallite Size on Gas Sensitivity to 800 ppm H2 and 800 ppm CO in Air at 300 ℃.[35] Copyright 1991,Sensors and Actuators B
图3 300 ℃退火的ZnO薄膜(a)TEM图,(b)传感响应值与工作温度的关系图[38]
Fig.3 (a) TEM Image and (b) Dependence of the Sensor Response on the Operating Temperature of ZnO Film Annealed at 300 ℃[38] Copyright 2016,Sensors and Actuators B
图4 还原性气体在n型半导体金属氧化物界面传感机理
Fig.4 Mechanism of Reducing Gas Sensing at n-type Semiconductor Metal Oxide Grain Boundaries
图5 (a) α-Fe2O3纳米串珠的SEM图,(b) α-Fe2O3纳米绳的SEM图;α-Fe2O3纳米串珠和纳米绳(c)对100~2000 ppm乙醇气体的响应灵敏度,(d)对100 ppm不同种类目标气体的响应灵敏度[47]
Fig.5 SEM images of (a) α-Fe2O3 Nanostrings and (b) α-Fe2O3 Nanoropes; (c) Response to different concentrations of C2H5OH (100~2000 ppm) and (d) Response to various target gases (100 ppm) of α-Fe2O3 Nanostrings and Nanoropes[47] Copyright 2015, Journal of Materials Chemistry A
图6 SnO2纳米管的(a)TEM图,(b)结构示意图,(c)HRTEM图,(d)室温条件下对9.7 ppm~9.7ppb NOx的响应-恢复曲线[57]
Fig.6 (a) TEM Image, (b) Schematic Image, (c) HRTEM Image and (d) Response-Recovery Curve of 9.7 ppm ~9.7 ppb NOx at Room Temperature for SnO2 Nanotubes.[57] Copyright 2012, CrystEngComm
图7 花状TiO2(a)扫描电镜图,(b)对不同浓度乙醇的敏感性能变化[70]
Fig.7 (a) FESEM image and (b) Sensitivity to Ethanol at Room Temperature of Flower-like TiO2 microstructures.[70] Copyright 2020, Materials Letters
图8 贵金属催化剂在SnO2颗粒表面的(a)化学敏化,(b)电子敏化作用机理示意图[79]
Fig.8 Schematic Illustration of (a) Chemical Sensitization and (b) Electron Sensitization Mechanism of Noble Metal Catalysts on the Surface of SnO2 Particles.[79]Copyright 1991,Sensors and Actuators B: Chemical
图9 (a, b)Au/ZnO纳米线暴露于空气和H2中的传感机理,(c) Au/ZnO纳米线SEM图,(d) Au/ZnO纳米线在室温下对不同浓度氢气的动态响应[80]
Fig.9 (a,b) Illustration of the Gas Sensing Mechanism for Au/ZnO Nanowires under Exposure to Ambient Air and H2 Gas (c) SEM Image of a Device based on Au/ZnO Nanowires and (d) Dynamic Response of a Device based on NWs to Di?erent Concentrations of H2 Gas at Room Temperature.[80]Copyright 2019,Sensors and Actuators B: Chemical
图10 Co掺杂SnO2薄膜(a)SEM图像,(b)室温条件下CO2气体响应曲线,(c)SnO2多层薄膜气敏机理示意图[84]
Fig.10 Co Doped SnO2 Thin Film (a) SEM image, (b) CO2 Gas Response Curve at Room Temperature and (c) Gas Sensitive Mechanism of SnO2 Multi-layer Thin Film.[84]Copyright 2020, Superlattices and Microstructures
图11 (a,b)SnO2纳米线置于空气和丙酮气体中,(c,d)负载Co3O4的SnO2纳米线置于空气和丙酮气体中的工作示意图,(e) 负载Co3O4的SnO2纳米线SEM图(插图为SnO2纳米线),(f) SnO2纳米线和负载Co3O4的SnO2纳米线对丙酮气体的响应曲线(Samples A为SnO2纳米线,Samples B 为负载Co3O4的SnO2纳米线 )[92]
Fig.11 Schematic images of Electrical Structures of SnO2 NW placed in (a) air and (b) Acetone Ambient, respectively, and Schematic images of Electrical Structures of Co3O4 NP/SnO2 NW in (c) air and (d) Acetone Ambient, respectively. (e) SEM image of Co3O4 NP/SnO2 NW (inset is SEM image of SnO2 NW). (f) Acetone Sensing Response of SnO2 NW (sample A) and Co3O4 NP/SnO2 NW (sample B).[92] Copyright 2020, Journal of Materials Research and Technology
图12 5.0 at% In-NiO 的(a) TEM图,(b)室温下对不同浓度NO2的响应曲线[93]
Fig.12 (a) TEM images of 5.0 at% In-NiO and (b) Responses of the Sensor based on the 5.0 at% In-NiO towards NO2 at different Concentrations at room Temperature[93]Copyright 2017,Journal of Materials Science: Materials in Electronics
图13 3D TiO2/G-CNT的(a)TEM图像,(b)室温条件下对各种气体的传感选择性[97]
Fig.13 (a) TEM Image of 3D TiO2/G-CNT and (b) The Sensing Selectivity of Various Gases at Room Temperature[97] Copyright 2019,Sensors and Actuators B: Chemical
图14 3D TiO2/G-CNT气敏材料在空气中(a)(b)和在甲苯中的(c)(d)传感机制示意图和能带图[97]
Fig.14 Schematic Image of Toluene Sensing Mechanism and energy-band diagrams for 3D TiO2/G-CNT Gas Sensitive Materials in air (a) (b) and in toluene gas (c)(d)[97] Copyright 2019,Sensors and Actuators B: Chemical
[1]
Zhang S D, Yang M J, Liang K Y, Turak A, Zhang B X, Meng D, Wang C X, Qu F D, Cheng W L, Yang M H. Sens. Actuat. B: Chem., 2019, 290: 59.
[2]
Busacca C, Donato A, Lo Faro M, Malara A, Neri G, Trocino S. Sens. Actuat. B: Chem., 2020, 303: 127193.
[3]
Sun H Y, Lv H. J. Alloys Compd., 2020, 823: 153742.
[4]
Kulkarni S B, Navale Y H, Navale S T, Stadler F J, Ramgir N S, Patil V B. Sens. Actuat. B: Chem., 2019, 288: 279.
[5]
Joshi N, Hayasaka T, Liu Y M, Liu H L, Oliveira O N, Lin L W. Microchimica Acta, 2018, 185(4): 1.
[6]
Wu Z L, Li Z J, Li H, Sun M X, Han S B, Cai C, Shen W Z, Fu Y Q. ACS Appl. Mater. Interfaces, 2019, 11(13): 12761.
[7]
Salimi kuchi P, Roshan H, Sheikhi M H. J. Alloys Compd., 2020, 816: 152666.
[8]
Chuang M Y, Lin Y T, Tung T W, Chang L Y, Zan H W, Meng H F, Lu C J, Tao Y T. Sens. Actuat. B: Chem., 2018, 260: 593.
[9]
Brattain W H, Bardeen J. Bell Syst. Tech. J., 1953, 32(1): 1.
[10]
Seiyama T, Kato A, Fujiishi K, Nagatani M. Anal. Chem., 1962, 34(11): 1502.
[11]
Yamazoe N, Sakai G, Shimanoe K. Catalysis Surveys from Asia, 2003, 7:63.
[12]
Yamauchi S. Chemical Sensor Technology. Amsterdam: Elsevier, 1992.
[13]
Ihokura K, Watson J. The Stannic Oxide Gas Sensor Principles and Applications, CRC Press, 2017.
[14]
Yun J M, Kim H I, Lee Y S. J. Mater. Sci., 2013, 48(23): 8320.
[15]
Wang F P, Hu K L, Liu H C, Zhao Q, Wang K Z, Zhang Y X. Int. J. Hydrog. Energy, 2020, 45(11): 7234.
[16]
Zhang J N, Lu H B, Liu C, Chen C J, Xin X. RSC Adv., 2017, 7(64): 40499.
[17]
Zappa D, Galstyan V, Kaur N, Munasinghe Arachchige H M M, Sisman O, Comini E. Anal. Chimica Acta, 2018, 1039: 1.
[18]
Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G. Prog. Mater. Sci., 2009, 54(1): 1.
[19]
Zhang J, Liu X H, Neri G, Pinna N. Adv. Mater., 2016, 28(5): 795.
[20]
Rasch F, Postica V, Schütt F, Mishra Y K, Nia A S, Lohe M R, Feng X L, Adelung R, Lupan O. Sens. Actuat. B: Chem., 2020, 320: 128363.
[21]
Kim S G, Jun J, Lee J S, Jang J. J. Mater. Chem. A, 2019, 7(14): 8451.
[22]
Xu K, Liao N B, Xue W, Zhou H M. Int. J. Hydrog. Energy, 2020, 45(15): 9252.
[23]
Li S H, Xie L L, He M, Hu X B, Luo G F, Chen C, Zhu Z G. Sens. Actuat. B: Chem., 2020, 310: 127828.
[24]
Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G, Wlodarski W. Thin Solid Films, 2009, 517(8): 2775.
[25]
Kim H J, Lee J H. Sens. Actuat. B: Chem., 2014, 192: 607.
[26]
Yoon J W, Kim H J, Kim I D, Lee J H. Nanotechnology, 2013, 24(44): 444005.
[27]
Peng F, Sun Y, Lu Y, Yu W W, Ge M Y, Shi J C, Cong R, Hao J M, Dai N. Nanomaterials, 2020, 10(4): 774.
[28]
Guo J, Zhang J, Zhu M, Ju D X, Xu H Y, Cao B Q. Sens. Actuat. B: Chem., 2014, 199: 339.
[29]
Cai Y, Fan H Q. CrystEngComm, 2013, 15(44): 9148.
[30]
Patil P, Gaikwad G, Patil D R, Naik J. Bull. Mater. Sci., 2016, 39(3): 655.
[31]
Mishra S, Ghanshyam C, Ram N, Bajpai R P, Bedi R K. Sens. Actuat. B: Chem., 2004, 972-3: 387.
[32]
Wongrat E, Chanlek N, Chueaiarrom C, Samransuksamer B, Hongsith N, Choopun S. Sens. Actuat. A: Phys., 2016, 251: 188.
[33]
Sundara Venkatesh P, Dharmaraj P, Purushothaman V, Ramakrishnan V, Jeganathan K. Sens. Actuat. B: Chem., 2015, 212: 10.
[34]
Fan S W, Srivastava A K, Dravid V P. Appl. Phys. Lett., 2009, 95(14): 142106.
[35]
Xu C N, Tamaki J, Miura N, Yamazoe N. Sens. Actuat. B: Chem., 1991, 3(2): 147.
[36]
Bai J L, Zhao C H, Gong H M, Wang Q, Huang B Y, Sun G Z, Wang Y R, Zhou J Y, Xie E Q, Wang F. J. Phys. D: Appl. Phys., 2019, 52(28): 285103.
[37]
Xu Q, Zhang Z C, Song X P, Yuan S, Qiu Z W, Xu H Y, Cao B Q. Sens. Actuat. B: Chem., 2017, 245: 375.
[38]
Deng J F, Fu Q Y, Luo W, Tong X H, Xiong J H, Hu Y X, Zheng Z P. Sens. Actuat. B: Chem., 2016, 224: 153.
[39]
Rothschild A, Komem Y. J. Appl. Phys., 2004, 95(11): 6374.
[40]
Wang X, Hu P, Yuan F L, Yu L J. J. Phys. Chem. C, 2007, 111(18): 6706.
[41]
Madou M J, Morrison S R. Chemical Sensing with Solid State Devices. Amsterdam: Elsevier, 1989: 437-477.
[42]
Shao B Y, Liu Y M, Zhuang X M, Hou S H, Han S J, Yu X G, Yu J S. J. Mater. Chem. C, 2019, 7(33): 10196.
[43]
Wang L L, Chen S, Li W, Wang K, Lou Z, Shen G Z. Adv. Mater., 2019, 31(4): 1970028.
[44]
Elzwawi S, Kim H S, Lynam M, Mayes E L H, McCulloch D G, Allen M W, Partridge J G. Applied Physics Letters. 2012, 101(24): 243508.
[45]
Zhao G, Xuan J, Liu X, Jia F, Sun Y, Sun M, Yin G, Liu B. Nanomaterials, 2019, 9(4):508.
[46]
Masoumi S, Shokrani M, Aghili S, Hossein-Babaei F. Sens. Actuat. B: Chem., 2019, 294: 245.
[47]
Yan S, Wu Q S. J. Mater. Chem. A, 2015, 3(11): 5982.
[48]
Al-Hashem M, Akbar S, Morris P. Sens. Actuat. B: Chem., 2019, 301: 126845.
[49]
Yan S, Zan G T, Wu Q S. Nano Res., 2015, 8(11): 3673.
[50]
Zhong Y J, Li W W, Zhao X L, Jiang X, Lin S Y, Zhen Z, Chen W D, Xie D, Zhu H W. ACS Appl. Mater. Interfaces, 2019, 11(14): 13441.
[51]
Choi P G, Izu N, Shirahata N, Masuda Y. Sens. Actuat. B: Chem., 2019, 296: 126655.
[52]
Gui Y H, Tian K, Liu J X, Yang L L, Zhang H Z, Wang Y. J. Hazard. Mater., 2019, 380: 120876.
[53]
Zhao S K, Shen Y B, Yan X X, Zhou P F, Yin Y Y, Lu R, Han C, Cui B Y, Wei D Z. Sens. Actuat. B: Chem., 2019, 286: 501.
[54]
Li Z Q, Song P, Yang Z X, Wang Q. Ceram. Int., 2018, 44(3): 3364.
[55]
Feng C H, Kou X Y, Liao X F, Sun Y F, Lu G Y. RSC Adv., 2017, 7(65): 41105.
[56]
Wang Y L, Jiang X C, Xia Y N. J. Am. Chem. Soc., 2003, 125(52): 16176.
[57]
Jiang C, Zhang G, Wu Y, Li L, Shi K Y. CrystEngComm, 2012, 14(8): 2739.
[58]
Cui J B, Shi L Q, Xie T F, Wang D J, Lin Y H. Sens. Actuat. B: Chem., 2016, 227: 220.
[59]
Xu L, Dong B, Wang Y, Bai X, Liu Q, Song H W. Sens. Actuat. B: Chem., 2010, 147(2): 531.
[60]
Zhao Y M, Zhu Y Q. Sens. Actuat. B: Chem., 2009, 137(1): 27.
[61]
Kortidis I, Swart H C, Ray S S, Motaung D E. Sens. Actuat. B: Chem., 2019, 285: 92.
[62]
Sun G. Preparation and Properties of Oxide Semiconductor Gas Sensing Materials. Beijing:Chemical Industry Press, 2018.( 孙广. 氧化物半导体气敏材料制备与性能. 北京: 化学工业出版社, 2018.).
[63]
Xu R, Zhang L X, Li M W, Yin Y Y, Yin J, Zhu M Y, Chen J J, Wang Y, Bie L J. Sens. Actuat. B: Chem., 2019, 289: 186.
[64]
Sun L, Fang W C, Yang Y, Yu H, Wang T T, Dong X T, Liu G X, Wang J X, Yu W S, Shi K Y. RSC Adv., 2017, 7(53): 33419.
[65]
Oosthuizen D N, Motaung D E, Swart H C. Sens. Actuat. B: Chem., 2018, 266: 761.
[66]
Minh Triet N, Thai Duy L, Hwang B U, Hanif A, Siddiqui S, Park K H, Cho C Y, Lee N E. ACS Appl. Mater. Interfaces, 2017, 9(36): 30722.
[67]
Govindhan M, Sidhureddy B, Chen A C. ACS Appl. Nano Mater., 2018, 1(11): 6005.
[68]
Zhang L H, Dong B, Xu L, Zhang X R, Chen J J, Sun X K, Xu H W, Zhang T X, Bai X, Zhang S, Song H W. Sens. Actuat. B: Chem., 2017, 252: 367.
[69]
Liu W Y, Wu J, Yang Y, Yu H, Dong X T, Wang X L, Liu Z L, Wang T T, Zhao B. J. Mater. Sci.: Mater. Electron., 2018, 29(6): 4624.
[70]
Wang M Y, Zhu Y Y, Meng D, Wang K K, Wang C Y. Mater. Lett., 2020, 277: 128372.
[71]
Li S Y, Wang M T, Li C Z, Liu J J, Xu M, Liu J, Zhang J T. Sci. China Mater., 2018, 61(8): 1085.
[72]
Nakate U T, Ahmad R, Patil P, Wang Y S, Bhat K S, Mahmoudi T, Yu Y T, Suh E K, Hahn Y B. J. Alloys Compd., 2019, 797: 456.
[73]
Zhu P H, Wang Y C, Ma P, Li S S, Fan F Q, Cui K, Ge S G, Zhang Y, Yu J H. Anal. Chem., 2019, 91(9): 5591.
[74]
Yi S Y, Song Y G, Park J Y, Suh J M, Kim G S, Shim Y S, Yuk J M, Kim S, Jang H W, Ju B K, Kang C Y. ACS Appl. Mater. Interfaces, 2019, 11(7): 7529.
[75]
Zhang H, Li H R, Cai L N, Lei Q, Wang J N, Fan W H, Shi K, Han G L. J. Mater. Sci.: Mater. Electron., 2020, 31(2): 910.
[76]
Ramakrishnan V, Nair K G, Dhakshinamoorthy J, Ravi K R, Pullithadathil B. Phys. Chem. Chem. Phys., 2020, 22(14): 7524.
[77]
Tang H Y, Li Y T, Sokolovskij R, Sacco L, Zheng H Z, Ye H Y, Yu H Y, Fan X J, Tian H, Ren T L, Zhang G Q. ACS Appl. Mater. Interfaces, 2019, 11(43): 40850.
[78]
Barbosa M S, Suman P H, Kim J J, Tuller H L, Orlandi M O. Sens. Actuat. B: Chem., 2019, 301: 127055.
[79]
Yamazoe N. Sens. Actuat. B: Chem., 1991, 51-4: 7.
[80]
Lupan O, Postica V, PauportÉ T, Viana B, Terasa M I, Adelung R. Sens. Actuat. B: Chem., 2019, 299: 126977.
[81]
Barbosa M S, Suman P H, Kim J J, Tuller H L, Varela J A, Orlandi M O. Sens. Actuat. B: Chem., 2017, 239: 253.
[82]
Wang Y R, Liu B, Cai D P, Li H, Liu Y, Wang D D, Wang L L, Li Q H, Wang T H. Sens. Actuat. B: Chem., 2014, 201: 351.
[83]
Liu Y S, Gao X, Li F, Lu G Y, Zhang T, Barsan N. Sens. Actuat. B: Chem., 2018, 260: 927.
[84]
Basyooni M A, Eker Y R, Yilmaz M. Superlattices Microstruct., 2020, 140: 106465.
[85]
Sabhajeet S R, Sonker R K, Yadav B C. Adv. Sci. Eng. Med., 2018, 10(7): 736.
[86]
Sankar Ganesh R, Durgadevi E, Navaneethan M, Patil V L, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil P S, Hayakawa Y. J. Alloys Compd., 2017, 721: 182.
[87]
Sudha M, Radha S, Kirubaveni S, Kiruthika R, Govindaraj R, Santhosh N. Solid State Sci., 2018, 78: 30.
[88]
Manjula M, Karthikeyan B, Sastikumar D. Appl. Phys. A, 2020, 126(9): 1.
[89]
Singh G, Virpal, Singh R C. Sens. Actuat. B: Chem., 2019, 282: 373.
[90]
Yan S, Xue J Z, Wu Q S. Sens. Actuat. B: Chem., 2018, 275: 322.
[91]
Dong S W, Wu D, Gao W Y, Hao H S, Liu G S, Yan S. Dalton Trans., 2020, 49(4): 1300.
[92]
Kim H, Cai Z C, Chang S P, Park S. J. Mater. Res. Technol., 2020, 9(1): 1129.
[93]
Dong Z B, Liu S T. J. Mater. Sci.: Mater. Electron., 2018, 29(4): 2645.
[94]
Zhou Y L, Wang J, Li X K. Ceram. Int., 2020, 46(9): 13827.
[95]
Adamu B I, Falak A, Tian Y, Tan X H, Meng X M, Chen P P, Wang H F, Chu W G. ACS Appl. Mater. Interfaces, 2020, 12(7): 8411.
[96]
Lokesh K, Kavitha G, Manikandan E, Mani G K, Kaviyarasu K, Rayappan J B B, Ladchumananandasivam R, Sundeep Aanand J, Jayachandran M, Maaza M. IEEE Sens. J., 2016, 16(8): 2477.
[97]
Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C. Sens. Actuat. B: Chem., 2019, 279: 69.
[98]
Wang T T, Hao J Y, Zheng S L, Sun Q, Zhang D, Wang Y. Nano Res., 2018, 11(2): 791.
[99]
Dwivedi P, Dhanekar S, Das S. Nanotechnology, 2018, 29(27): 275503.
[100]
Cui J B, Jiang J J, Shi L Q, Zhao F, Wang D J, Lin Y H, Xie T F. RSC Adv., 2016, 6(82): 78257.
[101]
da Silva L F, M’Peko J C, Catto A C, Bernardini S, Mastelaro V R, Aguir K, Ribeiro C, Longo E. Sens. Actuat. B: Chem., 2017, 240: 573.
No related articles found!