English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 824-836 DOI: 10.7536/PC210427 前一篇   后一篇

• 综述 •

自振荡凝胶的仿生运动

王丽媛1, 张朦1, 王静1, 袁玲1,*(), 任林1,2,*(), 高庆宇1,*()   

  1. 1 中国矿业大学化工学院 徐州 221116
    2 温州大学化学与材料工程学院 新材料与产业技术研究院 温州 325000
  • 收稿日期:2021-04-20 修回日期:2021-06-26 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 袁玲, 任林, 高庆宇
  • 基金资助:
    国家自然科学基金项目(21773304); 国家自然科学基金项目(21972165); 博士后特别资助项目(2020T130694)

Bionic Locomotion of Self-oscillating gels

Liyuan Wang1, Meng Zhang1, Jing Wang1, Ling Yuan1(), Lin Ren1,2(), Qingyu Gao1()   

  1. 1 School of chemical engineering and technology, China University of mining and technology,Xuzhou 221000, China
    2 College of chemistry and materials engineering, Institute of new materials and industrial technologies, Wenzhou university,Wenzhou 325035, China
  • Received:2021-04-20 Revised:2021-06-26 Online:2022-04-24 Published:2021-07-29
  • Contact: Ling Yuan, Lin Ren, Qingyu Gao
  • Supported by:
    National Natural Science Foundation of China(21773304); National Natural Science Foundation of China(21972165); Special Financial Aid to Chinese post-doctor research fellow(2020T130694)

定向运动是生命体最基本的功能,是其进化、生存和繁衍的前提。近年来为了研究生命体的运动机制,许多人工系统被相继开发并用于模拟部分生命体的运动行为。在诸多人工仿生系统里,自振荡凝胶由于同时具有内部驱动产生动能、运动定向性、无缆化和环境自适应等性能而备受瞩目。本文介绍了自振荡凝胶仿生运动的化学-机械能转换的理论根源并综述了仿生运动模式研究近期的进展,在此基础上展望了自振荡凝胶运动研究面临的机遇、挑战和未来发展方向。

As the prerequisite of life evolution, survival and reproduction, autonomous locomotion is the most basic function of organisms. In recent years, many artificial systems have been developed to simulate the motion behavior and to study the locomotion mechanism of living organisms. Among many kinds of artificial bionics systems, self-oscillating gels have attracted much attention due to its performance of internal drive to generate kinetic energy, directionality, untethered ability and environmental self-adaptation. In this review, the origin of chemo-mechanical energy conversion and the bionic locomotion modes of self-oscillating gels observed until now are introduced and summarized. On the basis of this, the opportunities, challenges and future directions of this field are prospected.

Contents

1 Introduction

2 Chemomechanical origin of the locomotion of self-oscillating gels

3 Bionic locomotion of self-oscillating gels

3.1 Peristaltic motion and self-walking

3.2 Photophobic and phototropic locomotion

3.3 Retrograde and direct wave locomotion

3.4 Autonomous reciprocating migration

3.5 Circular and angular locomotion

3.6 Collective locomotion

4 Conclusion and prospect

()
图1 BZ自振荡凝胶。(a)钌(Ⅲ/Ⅱ)催化BZ自振荡凝胶的化学结构式[33];(b)自振荡凝胶的膨胀态(Ru(bpy)33+)和收缩态(Ru(bpy)32+)[34]
Fig. 1 BZ self-oscillating gels. (a) The chemical structure of a BZ self-oscillating gel catalyzed by ruthenium(Ⅲ/Ⅱ)[33]; (b) The swelling state (Ru(bpy)33+) and the deswelling state (Ru(bpy)32+) of self-oscillating gels[34]
图2 v变量时空图和凝胶中心运动轨迹,均匀光强的增加导致凝胶从逆波运动向顺波运动转变[50]
Fig. 2 Spatiotemporal diagram of v variable and the trajectory of gel center, the increasing of uniform illumination involved the transition from retrograde wave motion to direct wave motion of the gel[50]
表1 化学波子区域划分准则
Table 1 Classification criteria for the sub regions of chemical waves
图3 主体波波后区域内推和拉作用的共存以及凝胶中心v变量最大值动力学分岔图。(a)化学波子区域中σx空时图(I=Ic),红色和黑色虚线分别表示vt = 0和vx = 0;(b)I=Ic时化学波区域2中变量v、ϕx、vx和vxx沿(a)中垂直红线的剖面;(c)凝胶中心点v变量(vmax-enter)最大值随光强增大的动力学分岔图,插入图表示不同光强条件下u-v振荡极限环[50]
Fig. 3 Mixed push and pull effects within primary wave back and dynamic bifurcation diagram of maximum of v at the gel center. (a) Sub-areas of σx plot at I = Ic. Red and black dashed lines, respectively, denote vt = 0 and vx = 0. (b) Spatial profiles of v, ϕx, vx and vxx within wave region 2 at I = Ic along the vertical red line in (a). (c) Dynamic bifurcation diagram of maximum of v at the gel center ( v m a x - c e n t e r) vs. I. The insets are the trajectories of the u-v oscillations at different light intensities[50]
图4 BZ自振荡凝胶的定向运动。(a)BZ自振荡凝胶的蠕动运动[51];(b)BZ自振荡凝胶自行走[52]
Fig. 4 The locomotion of self-oscillating BZ gel. (a) peristaltic motion of self-oscillating BZ gel[51]; (b) self-walking of self-oscillating BZ gel[52]
图5 毛细管中自振荡凝胶的向光运动和避光运动。(a)均相体系的光强-频率曲线,红色曲线为实验数据点,蓝色区域为模拟数据点;(b)左:避光运动。右:向光运动[53]
Fig. 5 The phototropic and photophobic movement of self oscillating gels in capillary tubes. (a) I-f relationship of homogeneous system. The red curve denotes the experimental data, and the blue area denotes the simulation data; (b) Left: phototropic movement. Right: photophobic movement.[53]
图6 非均匀光照下v的时空图和凝胶中心点的运动轨迹。三列(从左到右)分别为凝胶的逆波运动、不运动和顺波运动时,(a~c) v的时空图;(d~f) 时空图a~c的放大;(g,h) 凝胶中心点位置随时间的演化图[29]
Fig. 6 Spatiotemporal plots of v and motion of gel center under non-uniform illumination. The three columns (from left to right) display retrograde wave locomotion, motionless state, and direct wave locomotion of gel respectively. (a~c) Spatiotemporal plots of v; (d~f) expanded views of (a~c); (g,h) position of gel center with time.[29]
图7 一个局点振荡周期内随着光强的增加凝胶中心点的应力梯度变化[29]
Fig. 7 The evolution curves of the stress gradient in the gel center during one period of local oscillations vs. Iright.[29]
图8 毛细管内自振荡凝胶及其周期迁移的示意图。(a)将一维BZ凝胶置于具有三个不同照明区域的毛细管中,毛细管的左侧和右侧分别位于较暗和较亮的照明区域,中间部分是光强线性变化的过渡区,两端区域的光强度表示为Ileft和Iright;(b)凝胶的一个往返运动的示意图[59]
Fig. 8 Schematic of the self-oscillating gel in a tube and its periodic locomotion. (a) The 1D BZ gel in a capillary tube with three different illumination regions, the left and right parts of the capillary tube lie in the darker and brighter illumination regions, respectively. The central part is a transition region with a linear change of light intensity. The light intensities in the two end regions are denoted Ileft and Iright; (b) Schematic diagram showing one cycle of reciprocating locomotion of the gel[59]
图9 与鱼类类比的凝胶的自发往返迁移。(a)凝胶左边界(Rl)、右边界(Rr)和中心点(Rc)的轨迹;(b)一个迁移周期内的Rc随时间的演化,插图是标记为1到4的四个特征间隔的放大视图;(c,d)分别是凝胶做逆波运动和顺波运动的时空图;(e,f)分别是(c)和(d)相应的放大图,显示了化学波的传播,下部是三文鱼在返回或离开出生地的运动阶段迁徙的图片[59]
Fig. 9 Autonomous reciprocating migration of the gel and the fish analogy. (a) Motion of the gel grid points at the left boundary (Rl), the right boundary (Rr), and the gel center (Rc); (b) Rc vs. time over one cycle of the migration. Insets are enlarged views of four characteristic intervals labeled one to four; (c,d) are spatiotemporal plots of gel locomotion over the RW and DW phases, respectively; (e,f) corresponding enlarged views show chemical wave propagation in (c) and (d) respectively, the lower are pictures of salmon migration in the locomotion phase of returning to or departing from their birth place[59]
图10 凝胶马达的圆周运动(I=0)和转向运动(I=0.02)模式[60]
Fig. 10 Circular motion (I=0) and steering motion (I=0.02) mode of gel motor[60]
图11 光照强度方波控制凝胶定向运动。(a) 凝胶转动角度Δβ所需要光照时间随光强强度的关系;(b) 光照强度方波时间序列(I = 0.03)。对于不同时间序列曲线(Tc1、Tc2、Tc3和Tc4)光强(I = 0.03)持续时长分别是1453.0、3212.0、4924.0和6635.0;相应零光强(I = 0)持续时长(Trun)是58 471.5、26 002.0、 30 041.3和40 000.0。通过光强时间序列(Tc1、Tc2、 Tc3和Tc4)调制凝胶周期性转向运动的中心轨迹,转向角Δβ分别是(c) π/2, (d) π, (e) 3π/2和(f) 2π[60]。
Fig. 11 Gel locomotion under the control of square waves of illumination. (a) Duration of illumination required to produce steering angle Δβ as a function of I. (b) Time series of illumination with I = 0.03. For each curve (Tc1, Tc2, Tc3 and Tc4), duration of I = 0.03 (Tturn) is 1453.0, 3212.0, 4924.0 and 6635.0, respectively; and the duration of I = 0 (Trun) is 58 471.5, 26 002.0, 30 041.3 and 40 000.0, respectively. Trajectories of gel center show periodic steering of gel with angle Δβ = (c) π/2, (d) π, (e) 3π/2 and (f) 2π, with illumination times Tc1, Tc2, Tc3 and Tc4, respectively[60]
图12 自振荡聚合物刷工作示意图[64]
Fig. 12 Illustration of the self-oscillating polymer brush in operation.[64]
图13 BZ自振荡凝胶“风车”。(a~d)随时间推移凝胶“风车”的形成[67]
Fig. 13 Pinwheel of BZ self-oscillating gel. (a~d) Formation of gel pinwheel vs. time[67]
[1]
Bechinger C, Leonardo R D, Löwen H. Rev. Mod. Phys., 2016, 88: 045006.

doi: 10.1103/RevModPhys.88.045006     URL    
[2]
Pollard T D, Earnshaw W C, Lippincott-Schwartz J, Johnson G. Cell biology. Elsevier Health Sciences, USA, 2016.
[3]
Alexander R M. Principles of Animal Locomotion. Princeton: Princeton University Press, 2002.
[4]
Hess H, Ross J L. Chem. Soc. Rev., 2017, 46(18): 5570.

doi: 10.1039/c7cs00030h     pmid: 28329028
[5]
Grinthal A, Aizenberg J. Chem. Soc. Rev., 2013, 42(17): 7072.

doi: 10.1039/c3cs60045a     pmid: 23624804
[6]
Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M D, Simha R A. Rev. Mod. Phys., 2013, 85(3): 1143.

doi: 10.1103/RevModPhys.85.1143     URL    
[7]
Vicsek T, Zafeiris A. Phys. Rep., 2012, 517: 3/4: 71.
[8]
Merindol R, Walther A. Chem. Soc. Rev., 2017, 46(18): 5588.

doi: 10.1039/c6cs00738d     pmid: 28134366
[9]
Illien P, Golestanian R, Sen A. Chem. Soc. Rev., 2017, 46(18): 5508.

doi: 10.1039/C7CS00087A     URL    
[10]
Zhang J, Luijten E, Grzybowski B A, Granick S. Chem. Soc. Rev., 2017, 46(18): 5551.

doi: 10.1039/c7cs00461c     pmid: 28762406
[11]
Cera L, Schalley C A. Adv. Mater., 2018, 30(38): 1707029.

doi: 10.1002/adma.201707029     URL    
[12]
Lund K, Manzo A J, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R J, Stojanovic M N, Walter N G, Winfree E, Yan H. Nature, 2010, 465(7295): 206.

doi: 10.1038/nature09012     URL    
[13]
Marden J H, Allen L R. Proc. Natl. Acad. Sci., 2002, 99: 4161.

doi: 10.1073/pnas.022052899     URL    
[14]
Hoare B. Animal Migration:Remarkable Journeys in the Wild. Berkeley: University of California Press, 2009.
[15]
Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M. Science, 2012, 337(6096): 828.

doi: 10.1126/science.1222149     URL    
[16]
Michael W, Ryan L T, Daniel J F, Bobak M, Whitesides G M, Jennifer A L, Robert J W. Nature, 2016, 536: 451.

doi: 10.1038/nature19100     URL    
[17]
Hirono A, Toyota T, Asakura K, Banno T. Langmuir, 2018, 34(26): 7821.

doi: 10.1021/acs.langmuir.8b01352     pmid: 29878786
[18]
Tameyuki M, Hiranaka H, Toyota T, Asakura K, Banno T. Langmuir, 2019, 35(52): 17075.

doi: 10.1021/acs.langmuir.9b02707     pmid: 31797676
[19]
Vale R D, Milligan R A. Science, 2000, 288(5463): 88.

doi: 10.1126/science.288.5463.88     pmid: 10753125
[20]
Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118(21): 5134.

doi: 10.1021/ja9602511     URL    
[21]
Čejková J, Taisuke B, Martin M H, Štěpánek F. Artif. Life., 2017, 23: 528.

doi: 10.1162/ARTL_a_00243     pmid: 28985113
[22]
Yashin V V, Balazs A C. Science, 2006, 314(5800): 798.

doi: 10.1126/science.1132412     URL    
[23]
Gelebart A H, Jan M D, Varga M. Nature, 2017, 546: 632.

doi: 10.1038/nature22987     URL    
[24]
Palagi S, Mark A G, Reigh S Y. Nat. Mater., 2016, 15: 647.

doi: 10.1038/nmat4569     URL    
[25]
Hu W, Guo Z L, Mastrangeli M. Nature, 2018, 554: 81.

doi: 10.1038/nature25443     URL    
[26]
Yashin V V, Balazs A C. J. Chem. Phys., 2007, 126(12): 124707.

doi: 10.1063/1.2672951     URL    
[27]
Kim Y S, Tamate R, Akimoto A M, Yoshida R. Mater. Horiz., 2017, 4(1): 38.

doi: 10.1039/C6MH00435K     URL    
[28]
Yashin V V, Kuksenok O, Dayal P, Balazs A C. Rep. Prog. Phys., 2012, 75(6): 066601.

doi: 10.1088/0034-4885/75/6/066601     URL    
[29]
Ren L, She W B, Gao Q Y, Pan C W, Ji C, Epstein I R. Angew. Chem. Int. Ed., 2016, 55(46): 14301.

doi: 10.1002/anie.201608367     URL    
[30]
Ren L, Fan B W, Gao Q Y, Zhao Y M, Luo H N, Xia Y H, Lu X J, Epstein I R. Chaos: Interdiscip. J. Nonlinear Sci., 2015, 25(6): 064607.

doi: 10.1063/1.4921693     URL    
[31]
Dayal P, Kuksenok O, Balazs A C. PNAS, 2013, 110(2): 431.

doi: 10.1073/pnas.1213432110     URL    
[32]
Kuksenok O, Dayal P, Bhattacharya A, Yashin V V, Deb D, Chen I C, van Vliet K J, Balazs A C. Chem. Soc. Rev., 2013, 42(17): 7257.

doi: 10.1039/c3cs35497k     pmid: 23370524
[33]
Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Adv. Mater., 1997, 9(2): 175.

doi: 10.1002/adma.19970090219     URL    
[34]
Suzuki D, Sakai T, Yoshida R. Angew. Chem., 2008, 120(5): 931.

doi: 10.1002/ange.200703953     URL    
[35]
Kramb R C, Buskohl P R, Dalton M J, Vaia R A. Chem. Mater., 2015, 27(16): 5782.

doi: 10.1021/acs.chemmater.5b02412     URL    
[36]
Aizenberg M, Okeyoshi K, Aizenberg J. Adv. Funct. Mater., 2018, 28(27): 1704205.

doi: 10.1002/adfm.201704205     URL    
[37]
Arimura T, Mukai M. Chem. Commun., 2014, 50(44): 5861.

doi: 10.1039/C4CC01613K     URL    
[38]
Ren J, Gu J F, Tao L, Zhang G C, Yang W. Macromol. Res., 2016, 24(6): 502.

doi: 10.1007/s13233-016-4076-7     URL    
[39]
Hara Y, Mayama H, Yamaguchi Y, Fujimoto K. Chem. Lett., 2014, 43(5): 673.

doi: 10.1246/cl.131175     URL    
[40]
Ramaswamy S. Annu. Rev. Condens. Matter Phys., 2010, 1(1): 323.

doi: 10.1146/annurev-conmatphys-070909-104101     URL    
[41]
Ijspeert A J. Science, 2014, 346(6206): 196.

doi: 10.1126/science.1254486     pmid: 25301621
[42]
Anderson J L. Annu. Rev. Fluid Mech., 1989, 21(1): 61.

doi: 10.1146/annurev.fl.21.010189.000425     URL    
[43]
Vanni P, Magali L G, Monika T, Cedric A, Ondrej M, Lionel H, Silke H, Rastko S, Thomas B, Giovanni C, Martial B. Phys. Rev. Lett., 2019, 122: 168101.

doi: 10.1103/PhysRevLett.122.168101     URL    
[44]
Gao T, Li Z R. Phys. Rev. Lett., 2017, 119(10): 108002.

doi: 10.1103/PhysRevLett.119.108002     URL    
[45]
Fischer P. Nat. Phys., 2018, 14(11): 1072.

doi: 10.1038/s41567-018-0247-0     URL    
[46]
Yashin V V, Balazs A C. Macromolecules, 2006, 39(6): 2024.

doi: 10.1021/ma052622g     URL    
[47]
Kuksenok O, Yashin V V, Balazs A C. Phys. Rev. E, 2008, 78(4): 041406.

doi: 10.1103/PhysRevE.78.041406     URL    
[48]
Lu X J, Ren L, Gao Q Y, Yang Y Y, Zhao Y M, Huang J, Lv X L, Epstein I R. J. Phys. Chem. Lett., 2013, 4(22): 3891.

doi: 10.1021/jz402117m     URL    
[49]
Amemiya T, Ohmori T, Nakaiwa M, Yamaguchi T. J. Phys. Chem. A, 1998, 102(24): 4537.

doi: 10.1021/jp980189p     URL    
[50]
Ren L, Yuan L, Gao Q Y, Teng R, Wang J, Epstein I R. Sci. Adv., 2020, 6(18): eaaz9125.

doi: 10.1126/sciadv.aaz9125     URL    
[51]
Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Ed., 2008, 47(35): 6690.

doi: 10.1002/anie.200801347     URL    
[52]
Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Adv. Mater., 2007, 19(21): 3480.

doi: 10.1002/adma.200700625     URL    
[53]
Lu X J, Ren L, Gao Q Y, Zhao Y M, Wang S R, Yang J P, Epstein I R. Chem. Commun., 2013, 49(70): 7690.

doi: 10.1039/c3cc44480e     URL    
[54]
Mikhailov A S, Engel A. Phys. Lett. A, 1986, 117(5): 257.

doi: 10.1016/0375-9601(86)90088-5     URL    
[55]
Blasius B, Tönjes R. Phys. Rev. Lett., 2005, 95(8): 084101.

doi: 10.1103/PhysRevLett.95.084101     URL    
[56]
Kheowan O U, Mihaliuk E, Blasius B, Sendiña-Nadal I, Showalter K. Phys. Rev. Lett., 2007, 98(7): 074101.

doi: 10.1103/PhysRevLett.98.074101     URL    
[57]
Dayal P, Kuksenok O, Balazs A C. Langmuir, 2009, 25(8): 4298.

doi: 10.1021/la900051b     URL    
[58]
Aidley D J. Animal Migration. Cambridge: Cambridge Univ ersity Press, 1981.
[59]
Ren L, Wang M, Pan C W, Gao Q Y, Liu Y, Epstein I R. PNAS, 2017, 114(33): 8704.

doi: 10.1073/pnas.1704094114     URL    
[60]
Ren L, Wang L Y, Gao Q Y, Teng R, Xu Z Y, Wang J, Pan C W, Epstein I R. Angew. Chem. Int. Ed., 2020, 59(18): 7106.

doi: 10.1002/anie.202000110     URL    
[61]
Kane E A, Gershow M, Afonso B. Proc. Natl. Acad. Sci., 2013, 110: 3868.
[62]
Lee S M, Kwon T H. Micromech. J. M. 2007, 17: 687.
[63]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.

doi: 10.1038/nature10447     URL    
[64]
Masuda T, Hidaka M, Murase Y, Akimoto A M, Nagase K, Okano T, Yoshida R. Angew. Chem., 2013, 125(29): 7616.

doi: 10.1002/ange.201301988     URL    
[65]
Dayal P, Kuksenok O, Bhattacharya A, Balazs A C. J. Mater. Chem., 2012, 22(1): 241.
[66]
Yashin V V, Suzuki S, Yoshida R, Balazs A C. J. Mater. Chem., 2012, 22(27): 13625.

doi: 10.1039/c2jm32065g     URL    
[67]
Deb D, Kuksenok O, Dayal P, Balazs A C. Mater. Horiz., 2014, 1(1): 125.

doi: 10.1039/C3MH00083D     URL    
[68]
Ghosh A, Fischer P. Nano Lett., 2009, 9(6): 2243.

doi: 10.1021/nl900186w     URL    
[69]
Tottori S, Zhang L, Qiu F M, Krawczyk K K, Franco-ObregÓn A, Nelson B J. Adv. Mater., 2012, 24(6): 811.

doi: 10.1002/adma.201103818     URL    
[70]
Li J X, Sattayasamitsathit S, Dong R F, Gao W, Tam R, Feng X M, Ai S, Wang J. Nanoscale, 2014, 6(16): 9415.

doi: 10.1039/C3NR04760A     URL    
[71]
Lancia F, Yamamoto T, Ryabchun A, Yamaguchi T, Sano M, Katsonis N. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[72]
Lee J G, Brooks A M, Shelton W A, Bishop K J M, Bharti B. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[73]
Shao Q, Zhang S D, Hu Z, Zhou Y F. Angew. Chem. Int. Ed., 2020, 59(39): 17125.

doi: 10.1002/anie.202007840     URL    
[74]
Tamate R, Ueki T, Yoshida R. Angew. Chem. Int. Ed., 2016, 55(17): 5179.

doi: 10.1002/anie.201511871     pmid: 26960167
[75]
Shiraki Y, Yoshida R. Angew. Chem. Int. Ed., 2012, 51(25): 6112.

doi: 10.1002/anie.201202028     pmid: 22573517
[76]
Poros-Tarcali E, Perez-Mercader J. Soft Matter, 2021, 17(15): 4011.

doi: 10.1039/d1sm00150g     pmid: 33666638
[77]
He X M, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Nature, 2012, 487(7406): 214.

doi: 10.1038/nature11223     URL    
[78]
Zhao Y S, Xuan C, Qian X S, Alsaid Y, Hua M T, Jin L H, He X M. Sci. Robot., 2019, 4(33): eaax7112.

doi: 10.1126/scirobotics.aax7112     URL    
[79]
Hua M T, Kim C, Du Y J, Wu D, Bai R B, He X M. Matter, 2021, 4(3): 1029.

doi: 10.1016/j.matt.2021.01.002     URL    
[1] 路兴杰, 赵跃民, 任林, 杨莹莹, 高庆宇*. 光敏性BZ反应的时空动力学[J]. 化学进展, 2012, 24(05): 709-721.
阅读次数
全文


摘要

自振荡凝胶的仿生运动