English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1440-1449 DOI: 10.7536/PC200738 前一篇   后一篇

• 综述 •

固态电分析化学及其植物研究

傅力1,*(), 张怀伟1, 叶玮婷1, 叶辰2, 林正得2,*()   

  1. 1 杭州电子科技大学材料与环境工程学院 杭州 310018
    2 中国科学院宁波材料技术与工程研究所 表面工程事业部 浙江省海洋材料与防护技术重点实验室 中科院海洋新材料与应用技术重点实验室 宁波 315201
  • 收稿日期:2020-07-16 修回日期:2020-12-20 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 傅力, 林正得
  • 基金资助:
    国家自然科学基金项目(22004026); 中国博士后科学基金(2018M640523)

Solid-State Electroanalytical Chemistry and Its Application in Plant Analysis

Li Fu1(), Huaiwei Zhang1, Weiting Ye1, Chen Ye2, Cheng-Te Lin2()   

  1. 1 College of Materials and Environmental Engineering, Hangzhou Dianzi University,Hangzhou 310018, China
    2 CAS Key Laboratory of Marine New Materials and Related Technology, Zhejiang Key Laboratory of Marine Materials and Protection Technology, Division of Surface Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
  • Received:2020-07-16 Revised:2020-12-20 Online:2021-08-20 Published:2020-12-28
  • Contact: Li Fu, Cheng-Te Lin
  • Supported by:
    National Natural Science Foundation of China(22004026); China Postdoctoral Science Foundation(2018M640523)

固态电分析化学(SSEAC)是一种利用电化学方法对固体物质的信息进行分析的手段,特别适用于分析固态物质的元素成分、相位成分和氧化还原状态。SSEAC技术发展至今已被成功应用于获取天然颜料、植物、矿物和文物的电化学信息,并进行定性和定量分析。基于SSEAC的植物分析研究是近年来电分析化学和植物化学之间兴起的一种交叉分析技术,它在学术上可以对物种的种间关系、变异、分化与适应提出新的认识,同时在药材鉴定、食品安全和经济作物品质控制中拥有着非常直观的现实应用价值。本文详细综述了近年来SSEAC技术在植物鉴定识别、植物系统发生学和植物生理监测的工作。在此基础上,本文还总结了SSEAC技术在植物分析中存在的问题,并分析了其在未来发展中的前景。

Solid-state electroanalytical chemistry(SSEAC) is a method to analyze the information of solid materials by electrochemical methods, especially for the analysis of element composition, phase composition and redox state of solid materials. The SSEAC technology has been successfully applied to obtain the electrochemical information of natural pigments, plants, minerals and cultural relics with qualitative and quantitative analysis. SSEAC-based plant analysis is a cross-analysis technique emerging between electroanalytical chemistry and phytochemistry in recent years. SSEAC can provide a new understanding of the interspecific relationship, variation, differentiation and adaptation of species, which has a very intuitive practical value in the identification of medicinal materials, food safety and crop quality control. This article reviews the work of SSEAC technology in plant identification, plant phylogeny and plant physiological monitoring in recent years. This review also summarizes the challenges of SSEAC technology in plant analysis as well as its prospects in future development.

Contents

1 Introduction

2 Background information of SSEAC

2.1 Definition and scope of SSEAC

2.2 Electrochemical method for solid particle analysis

2.3 Type of information obtained by SSEAC technology

3 SSEAC for plant analysis

3.1 Plant identification

3.2 Phylogenetic study

3.3 Plant physiological monitoring

4 Conclusion and outlook

()
图1 分子电化学向固态电化学过渡过程中的研究主题及其关系[1]
Fig. 1 Scheme of possible relationships among topics typically involved in the transition from molecular electrochemistry to solid state electrochemistry[1]
图2 SSEAC电极的三种制备方法
Fig. 2 Three electrode preparation methods for SSEAC
图3 SSEAC技术主要分析的信息类型[1]
Fig. 3 Scheme of analytical information provided using SSEAC[1].
图4 利用伏安峰比绘制的三维图用于印度仙人掌(Caralluma adscendens)三个品种的识别[42]
Fig. 4 Three-dimensional diagram constructed from the peak ratio obtained from the three varieties of Caralluma adscendens[42]
图5 a)中国石蒜、安徽石蒜、忽地笑、稻草石蒜和黄长筒石蒜的三维模式图[46],b)红花石蒜、稻草石蒜、中国石蒜、换锦花和忽地笑的2.5维模式图[47],c)百子莲的2D密度图[48],d) 石蒜属内17个种的RGB色带模式图[49]
Fig. 5 a) 3D patterns of L. chinensis, L. anhuiensis, L. aurea, L. straminea and L. longituba var. flava[46]. b) 2.5D patterns of L. chinensis, L. radiate, L. aurea, L. sprengeri and L. straminea[47], c) 2D density plot of Agapanthus africanus[48], d) RGB color tapes of 17 species of Lycoris
图6 a)利用电化学伏安图谱中出峰位置的差异对7科16种的类蔷薇种进行识别; b)基于电化学指纹图谱的系统树图[56]
Fig. 6 a) Identification of 16 species of Rosales in 7 families using the difference in peak potential in the electrochemical fingerprint. b) Dendrogram deduced from electrochemical fingerprint[56]
图7 a)典型利用玻碳电极进行植物SSEAC采集的电解池及电极表面示意图; b) 利用二维材料包覆的植物SSEAC采集方式示意图
Fig. 7 a) Schematic diagram of a typical cell and electrode surface for plant SSEAC collection. b) Schematic diagram of SSEAC recording method of plants covered with two-dimensional materials
图8 a)基于SSEAC获取的石蒜花粉数据的系统发生树,b)基于石蒜花粉孢粉学数据的系统发生树[49]
Fig. 8 a) Dendrogram of Lycoris spp. deduced from SSEAC data. b) Dendrogram of Lycoris spp. deduced from palynologcal characterization[49]
图9 δ-cadinene参与的电化学氧化信号传导过程的示意图[68]
Fig. 9 Scheme of possible electrochemical and chemical oxidation processes involved in δ-cadinene signaling[68]
[1]
DomÉnech-CarbÓ A, Labuda J, Scholz F. Pure Appl. Chem., 2012, 85(3): 609.

doi: 10.1351/PAC-REP-11-11-13     URL    
[2]
Scholz F, Nitschke L, Henrion G. Naturwissenschaften, 1989, 76(2): 71.

doi: 10.1007/BF00396709     URL    
[3]
Scholz F, Nitschke L, Henrion G, Damaschun F. Naturwissenschaften, 1989, 76(4): 167.

doi: 10.1007/BF00366398     URL    
[4]
Scholz F, Lange B. Trac Trends Anal. Chem., 1992, 11(10): 359.

doi: 10.1016/0165-9936(92)80025-2     URL    
[5]
Scholz F, Schröder U, Meyer S, Brainina K Z, Zakhachuk N F, Sobolev N V, Kozmenko O A. J. Electroanal. Chem., 1995, 385(1): 139.

doi: 10.1016/0022-0728(94)03840-Y     URL    
[6]
DomÉnech-CarbÓ A, Domínguez I, Hernández-Muñoz P Gavara, Food Chem., 2015, 172: 318.

doi: 10.1016/j.foodchem.2014.09.066     URL    
[7]
Scholz F. J. Solid State Electrochem., 1997, 1(2): 181.

doi: 10.1007/s100080050044     URL    
[8]
Bond A M, Scholz F. Z. Chem., 2010, 30(4): 117.

doi: 10.1002/zfch.v30:4     URL    
[9]
Fritz H. Z Anal Chem., 1929, 78: 418.

doi: 10.1007/BF01364637     URL    
[10]
Weisz H. Microanalysis by the Ring-Oven Technique: International Series of Monographs in Analytical Chemistry. Elsevier, 2013. 41.
[11]
Adams R N. Anal. Chem., 1958, 30(9): 1576.
[12]
Kuwana T, French W G. Anal. Chem., 1964, 36(1): 241.

doi: 10.1021/ac60207a006     URL    
[13]
Schultz F A, Kuwana T. J. Electroanal. Chem. 1959, 1965, 10(2): 95.
[14]
Scholz F, Meyer B. Chem. Soc. Rev., 1994, 23(5): 341.

doi: 10.1039/cs9942300341     URL    
[15]
Scholz F, Nitschke L, Henrion G. Fresenius' Zeitschrift Für Anal. Chemie, 1989, 334(1): 56.
[16]
Lehmann V, Rickert H. J. Appl. Electrochem., 1979, 9(2): 209.

doi: 10.1007/BF00616091     URL    
[17]
Rublinetskaya Y V, Il’inykh E O, Slepushkin V V. J. Anal. Chem., 2009, 64(5): 509.

doi: 10.1134/S106193480905013X     URL    
[18]
Rublinetskaya Y V, Il’inykh E O, Slepushkin V V. J. Anal. Chem., 2011, 66(1): 84.
[19]
Rolison D R, Bessel C A. Acc. Chem. Res., 2000, 33(11): 737.

doi: 10.1021/ar9701272     URL    
[20]
Kulesza P J, Jedral T, Galus Z. Electrochimica Acta, 1989, 34(6): 851.

doi: 10.1016/0013-4686(89)87118-X     URL    
[21]
Durst R A. Pure Appl. Chem., 1997, 69(6): 1317.

doi: 10.1351/pac199769061317     URL    
[22]
Grygar T, Marken F, Schröder U, Scholz F. Collect. Czech. Chem. Commun., 2002, 67(2): 163.

doi: 10.1135/cccc20020163     URL    
[23]
Scholz F, Lange B, Jaworski A, Pelzer J. Fresenius' J. Anal. Chem., 1991, 340(3): 140.

doi: 10.1007/BF00324469     URL    
[24]
Grygar T. J. Electroanal. Chem., 1996, 405(1/2): 117.

doi: 10.1016/0022-0728(95)04404-3     URL    
[25]
Komorsky-Lovrić Š, Scholz F. J. Electroanal. Chem., 1998, 445(1/2): 81.

doi: 10.1016/S0022-0728(97)00569-X     URL    
[26]
Kiwilszo M, Smulko J. J. Solid State Electrochem., 2009, 13(11): 1681.

doi: 10.1007/s10008-008-0643-y     URL    
[27]
Shaw S J, Marken F, Bond A M. J. Electroanal. Chem., 1996, 404(2): 227.

doi: 10.1016/0022-0728(95)04387-X     URL    
[28]
Shaw S J, Marken F, Bond A M. Electroanalysis, 1996, 8(8/9): 732.

doi: 10.1002/(ISSN)1521-4109     URL    
[29]
Inzelt G, Puskás Z. Electrochem. Commun., 2004, 6(8): 805.

doi: 10.1016/j.elecom.2004.05.019     URL    
[30]
Puskás Z, Inzelt G. J. Solid State Electrochem., 2004, 8(10): 828.
[31]
DomÉnech-CarbÓ A, Sánchez-Ramosa S, DomÉnech-CarbÓ M, Gimeno-Adelantado J, Bosch-Reig F, Yusá-Marco D, Saurí-Peris M. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal., 2002, 14: 685.
[32]
Meyer B, Zhang S, Scholz F,. Fresenius J. Anal. Chem., 1996, 356: 267.
[33]
DomÉnech A, DomÉnech-CarbÓ M. T, Edwards H. G. M. Anal. Chem., 2008, 80: 2704.

doi: 10.1021/ac7024333     URL    
[34]
Antonio D C. Electrochemistry of Porous Materials. CRC Press: Boca Raton., 2009. 1.
[35]
DomÉnech-CarbÓ A, Moya-Moreno M, DomÉnech-CarbÓ M T. Anal. Bioanal. Chem., 2004, 380(1): 146.
[36]
Scheurell S, Scholz F, Olesch T, Kemnitz E. Supercond. Sci. Technol., 1992, 5(5): 303.

doi: 10.1088/0953-2048/5/5/005     URL    
[37]
Sabater M J, Corma A, Domenech A, FornÉs V, García H. Chem. Commun., 1997(14): 1285.
[38]
DomÉnech-CarbÓ A, DomÉnech-CarbÓ M. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal., 2005, 17: 1959.
[39]
Komorsky-Lovrić Š, Bartoll J, Stoßer R, Scholz F. Croat. Chem. Acta., 1997, 70: 563.
[40]
Komorsky-Lovrić Š. Croat. Chem. Acta., 1998, 71: 263.
[41]
Domínguez I, DomÉnech-CarbÓ A. Sens. Actuators B Chem., 2015, 210: 491.

doi: 10.1016/j.snb.2015.01.009     URL    
[42]
Martini M, Machado de Carvalho L, Blasco-Blasco A, DomÉnech-CarbÓ A. Anal. Methods, 2015, 7(14): 5740.

doi: 10.1039/C5AY01145K     URL    
[43]
Scholz F, Schröder U, Gulaboski R, DomÉnech-CarbÓ A. Electrochemistry of Immobilized Particles and Droplets. Cham: Springer International Publishing, 2014:11/17.
[44]
Cebrián-TorrejÓn G, DomÉnech-CarbÓ A, Figadère B, Poupon E, Fournet A. Phytochem. Anal., 2017, 28(3): 171.

doi: 10.1002/pca.v28.3     URL    
[45]
DomÉnech-CarbÓ A, DomÉnech-CarbÓ M. T, Ferragud-Adam X, Ortiz-Miranda A. S, Montoya N, Pasíes-Oviedo T, PeirÓ-Ronda M. A, Vives-Ferrándiz J, CarriÓn Marco Y. Anal. Methods., 2017, 9: 2041.

doi: 10.1039/C7AY00323D     URL    
[46]
Fu L, Zheng Y H, Zhang P C, Zhu J W, Zhang H Y, Zhang L X, Su W T. Electrochem. Commun., 2018, 92: 39.

doi: 10.1016/j.elecom.2018.05.018     URL    
[47]
Fu L, Zheng Y H, Zhang P C, Zhang H Y, Zhuang W B, Zhang H W, Wang A W, Su W T, Yu J H, Lin C T. Biosens. Bioelectron., 2018, 120: 102.

doi: S0956-5663(18)30653-5     pmid: 30172233
[48]
Fu L, Zheng Y H, Zhang P C, Zhang H Y, Xu Y T, Zhou J T, Zhang H W, Karimi-Maleh H, Lai G S, Zhao S C, Su W T, Yu J H, Lin C T. Biosens. Bioelectron., 2020, 159: 112212.
[49]
Fu L, Wu M Y, Zheng Y H, Zhang P C, Ye C, Zhang H W, Wang K Q, Su W T, Chen F, Yu J H, Yu A M, Cai W, Lin C T. Sens. Actuat. B: Chem., 2019, 298: 126836.
[50]
Fu L, Wang Q, Zhang M, Zheng Y, Wu M, Lan Z, Pu J, Zhang H, Chen F, Su W. Front. Chem., 2020, 8: 92.

doi: 10.3389/fchem.2020.00092     URL    
[51]
Li Z, Zhang X, Zhou J, Zhang H, Zheng Y, Liu Q, Fu L. Int. J. Electrochem. Sci., 2019, 14: 10531.
[52]
Zhang X, Zhou J, Li Z, Qin Y, Yu R, Zhang H, Zheng Y, Zhu J, Zhang D, Fu L. Int. J. Electrochem. Sci., 2019, 14: 6283.
[53]
Fu L, Zhang H, Zheng Y, Zhang H, Liu Q,. Rev. Mex. Ing. Quím., 2020, 19: 803.
[54]
Zhou J, Wu M, Xu Y, Li Z, Yao Y, Fu L. Int. J. Electrochem. Sci., 2020, 15: 5793.
[55]
Tundis R, Peruzzi L, Menichini F. Phytochemistry, 2014, 102: 7.

doi: 10.1016/j.phytochem.2014.01.023     pmid: 24661611
[56]
DomÉnech-CarbÓ A, Ibars A M, Prieto-Mossi J, Estrelles E, Scholz F, Cebrián-TorrejÓn G, Martini M. New J. Chem., 2015, 39(9): 7421.

doi: 10.1039/C5NJ01233C     URL    
[57]
Ortiz-Miranda A. S, König P, Kahlert H, Scholz F, Osete-Cortina L, DomÉnech-CarbÓ M. T, DomÉnech-CarbÓ A. Anal. Bioanal. Chem. 2016, 408: 4943.

doi: 10.1007/s00216-016-9588-7     pmid: 27173392
[58]
Wang X R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt A E. Am. J. Bot., 1999, 86(12): 1742.

pmid: 10602767
[59]
DomÉnech-CarbÓ A, Ibars A M, Prieto-Mossi J, Estrelles E, DomÉnech-CarbÓ M T, Ortiz-Miranda A S, Martini M, Lee Y. Electroanalysis, 2017, 29(2): 313.

doi: 10.1002/elan.201780201     URL    
[60]
The Angiosperm Phylogeny Group. Bot. J. Linn. Soc., 2009, 161: 105.
[61]
Fu L, Zheng Y H, Zhang P C, Zhang H Y, Wu M Y, Zhang H W, Wang A W, Su W T, Chen F, Yu J H, Cai W, Lin C T. Bioelectrochemistry, 2019, 129: 199.

doi: S1567-5394(19)30206-3     pmid: 31200249
[62]
Xu Y T, Lu Y J, Zhang P C, Wang Y Y, Zheng Y H, Fu L, Zhang H W, Lin C T, Yu A M. Bioelectrochemistry, 2020, 133: 107455.
[63]
Lu Y, Xu Y, Shi H, Zhang P. Z. H, Fu L. Int. J. ElectroChem. Sci., 2020, 15: 758.
[64]
Zhang M J, Pan B, Wang Y Y, Du X P, Fu L, Zheng Y H, Chen F, Wu W H, Zhou Q W, Ding S, Zhao S C. ChemistrySelect, 2020, 5(17): 5035.

doi: 10.1002/slct.v5.17     URL    
[65]
Wu J Q, Baldwin I T. Plant Cell Environ., 2009, 32(9): 1161.

doi: 10.1111/pce.2009.32.issue-9     URL    
[66]
Pechan T, Ye L J, Chang Y M, Mitra A, Lin L, Davis F M, Williams W P, Luthe D S. Plant Cell, 2000, 12(7): 1031.

pmid: 10899972
[67]
Adler F R. Biol. Lett., 2011, 7(2): 161.

doi: 10.1098/rsbl.2010.0790     URL    
[68]
DomÉnech-CarbÓ A, Cebrián-TorrejÓn G, Lopes-Souto A, Martins-De-moraes M, Jorge-Kato M, Fechine-Tavares J, Barbosa-Filho J M. RSC Adv., 2015, 5(75): 61006.
[69]
DomÉnech-CarbÓ A, CervellÓ-Bulls P, González J M, Soriano P, Estrelles E, Montoya N. RSC Adv., 2019, 9(31): 17856.
No related articles found!
阅读次数
全文


摘要

固态电分析化学及其植物研究