English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 659-666 DOI: 10.7536/PC170352 前一篇   后一篇

• 综述 •

纸喷雾敞开式质谱法的发展和应用

刘婧靖1,2,3*, 何晓伟1,2, 何燕1,2, 喻目千1,2, 蒋乐1,2, 陈波1,2*   

  1. 1. 湖南师范大学植化单体开发与利用湖南省重点实验室 长沙 410081;
    2. 湖南师范大学化学生物学及中药分析教育部重点实验室 长沙 410081;
    3. 南华大学 化学化工学院 衡阳 421001
  • 收稿日期:2017-03-31 修回日期:2017-05-10 出版日期:2017-06-15 发布日期:2017-06-06
  • 通讯作者: 陈波,e-mail:dr-chenpo@vip.sina.com;刘婧靖, e-mail:ljj52677@126.com E-mail:dr-chenpo@vip.sina.com;ljj52677@126.com
  • 基金资助:
    国家自然科学基金项目(No.21575040,21405044,21275049)和湖南省自然科学基金项目(No.2015JC1001)资助

Development and Application of Paper Spray Ionization Mass Spectrometry

Jingjing Liu1,2,3*, Xiaowei He1,2, Yan He1,2, Muqian Yu1,2, Le Jiang1,2, Bo Chen1,2*   

  1. 1. Key Laboratory of Phytochemical R & D of Hunan Province, Hunan Normal University, Changsha 410081, China;
    2. Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha 410081, China;
    3. College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
  • Received:2017-03-31 Revised:2017-05-10 Online:2017-06-15 Published:2017-06-06
  • Contact: 10.7536/PC170352 E-mail:dr-chenpo@vip.sina.com;ljj52677@126.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21575040,21405044,21275049) and the Natural Science Foundation of Hunan Province (No.2015JC1001).
纸喷雾质谱法是一种新型的敞开式质谱技术,其以低价易处理的纸为载体,将样品加在三角形的纸上,通过施加高电压,目标分子在电场的驱动下到达纸尖,瞬间气化形成电喷雾,样品离子化后进入质谱进行分析。它具有敞开式质谱法和电喷雾电离技术的特点,可以在开放式大气压环境下对样品或样品表面的物质进行分析,分析成本低、高通量、简便、实时、快速,可简化工作流程,提高质谱仪器的易用性。本文从纸喷雾质谱法的原理出发,介绍了影响其电离效率的主要因素(如载体基质,溶剂系统,洗脱方式等),并对近几年该技术的改进和发展,及其在生物样品检测、植物化学分析、品种鉴别、食品安全和环境分析等领域的应用进行了综述,全面介绍了该项技术的特点和优势。多项研究证明纸喷雾质谱法是一个应用面广泛,具有很大发展前景的分析技术,对其开展研究工作十分有意义。最后讨论了纸喷雾质谱法存在的不足,并提出了相关改进的设想。
Paper spray ionization mass spectrometry (PSI-MS) is a new technology of mass spectrometry. This method uses low-cost paper as the carrier, and solid or liquid sample is added to a triangular paper substrate. Through the application of high voltage, the target molecules in the high voltage electric field are driven to reach the paper tip, then a charged spray for PSI-MS is generated. This technology combines the characteristics of ambient mass spectrometry (AMS) and electrospray ionization (ESI) technology, and can analyze sample or substance attached to the sample surface in an open atmospheric environment. It has many advantages such as low cost, high throughput, simple, real-time and fast, and it can also simplify the work processes, improving the usability of mass spectrometry equipment. Herein, a general overview of PSI-MS is given in this paper, including the principle, influencing factors (paper substrate, spray solution, elution mode, and internal standard), the improvement and development of the technology, and corresponding applications in various fields (i.e. biological samples, phytochemistry, variety identification, food safety, and environmental analysis) in recent years. Characteristics and advantages of this technology are introduced in details. A number of studies have proved that PSI-MS is a widely used analytical technique with great prospects. Finally, the shortcomings of PSI-MS in terms of accurate quantification, carrier selection and field analysis are discussed, and some ideas for its improvement are put forward.

Contents
1 Introduction
2 Principle of PSI-MS
3 Influencing Factors
3.1 Paper substrate
3.2 Spray solution
3.3 Elution mode
3.4 Other factors
4 Modification of PSI-MS
4.1 Paper modification
4.2 Improvement of solvent supply
4.3 Improvement of sampling
4.4 PSI-MS combined with other technologies
4.5 Derivation of PSI-MS
5 Application of PSI-MS
5.1 Analysis of biological samples
5.2 Analysis of phytochemistry
5.3 Variety identification
5.4 Food safety
5.5 Environmental analysis
6 Conclusion and outlook

中图分类号: 

()
[1] Takáts Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306:471.
[2] Shiea J, Yuan C H, Huang M Z, Cheng S C, Ma Y L, Tseng W L, Chang H C, Hung W C. Anal. Chem., 2008, 80:4845.
[3] Sampson J S, Hawkridge A M, Muddiman D C. J. Am. Soc. Mass. Spectrom., 2006, 17:1712.
[4] Nemes P, Akos V. Methods Mol. Biol., 2010, 656:159.
[5] Robert B C, James A L, Durst H D. Anal. Chem., 2005, 77:2297.
[6] Yang S P, Ding J H, Zheng J, Hu B, Li J Q, Chen H W, Zhou Z Q, Qiao X L. Anal. Chem., 2009, 81:2426.
[7] Hayen H, Michels A, Franzke J. Anal. Chem., 2009, 81:10239.
[8] Markus H, Jaroslav P, Ville S, Ville A, Tapio K, Raimo A K, Franssila S, Tiina J K, Risto K. Eur. J. Pharm. Sci., 2007, 79:7867.
[9] Smith M J, Cameron N R, Mosely J A. Analyst, 2012, 137:4524.
[10] Cheng S C, Cheng T L, Chang H C, Shiea J. Anal. Chem., 2009, 81:868.
[11] Chen L C, Yoshimura K, Yu Z, Iwata R, Ito H, Suzuki H, Mori K, Ariyada O, Takeda S, Kubota T. J. Mass Spectrom., 2009, 44:1469.
[12] Grimm R L, Beauchamp J L. J. Phys. Chem. B, 2005, 109:8244.
[13] Ozdemir A, Chen C H. J. Mass Spectrom., 2010, 45:1203.
[14] Haddad R, Sparrapan R, Kotiaho T, Eberlin M N. Anal. Chem., 2008, 80:898.
[15] Rezenom Y H, Dong J, Murray K K. Analyst, 2008, 133:226.
[16] Chen H W, Venter A, Cooks R G. Chem. Commun., 2006, 42:2042.
[17] Wang H, Liu J J, Cooks R G, Ouyang Z. Angew. Chem., 2010, 49:834.
[18] Liu J J, Wang H, Manicke N E, Lin J M, Cooks R G, Ouyang Z. Anal. Chem., 2010, 82:2463.
[19] Espy R D, Muliadi A R, Ouyang Z, Cooks R G. Int. J. Mass spectrom., 2012, s 325/327:167.
[20] Ren Y, Wang H, Liu J J, Zhang Z P, Mcluckey M N, Ouyang Z. Chromatographia, 2013, 76:1339.
[21] Wong M Y M, Tang H W, Man S H, Lam C W, Che C M, Ng K M. Rapid Commun. Mass Spectrom., 2013, 27:713.
[22] Mandal M K, Chen L C, Hiraoka K. J. Am. Soc. Mass. Spectrom., 2011, 22:1493.
[23] Yang Q, Wang H, Maas J D, Chappell W J, Manicke N E, Cooks R G, Ouyang Z. Int. J. Mass spectrom., 2012, 312:201.
[24] Lin C H, Liao W C, Chen H K, Kuo T Y. Bioanalysis, 2014, 6:199.
[25] Zhang Z P, Xu W, Manicke N E, Cooks R G, Ouyang Z. Anal. Chem., 2011, 84:931.
[26] Zhang M, Lin F K, Xu J G, Xu W. Anal. Chem., 2015, 87:3123.
[27] Zheng Y, Wang Q, Wang X, Chen Y, Wang X, Zhang X, Bai Z, Han X, Zhang Z. Anal. Chem., 2016, 88:7005.
[28] Liu J J, He Y, Chen S, Ma M, Yao S Z, Chen B. Talanta, 2017, 166:306.
[29] Narayanan R, Sarkar D, Cooks R G, Pradeep T. Angew. Chem. Int. Ed., 2014, 53:5936.
[30] Liu W, Mao S F, Wu J, Lin J M. Analyst, 2013, 138:2163.
[31] Lee H, Jhang C S, Liu J T, Lin C H. J. Sep. Sci., 2012, 35:2822.
[32] Shen L H, Zhang J, Yang Q, Manicke N E, Ouyang Z. Clin. Chim. Acta, 2013, 420:28.
[33] Wleklinski M, Li Y F, Bag S, Sarkar D, Narayanan R, Pradeep T, Cooks R G. Anal. Chem., 2015, 87:6786.
[34] Zhang C, Manicke N E. Anal. Chem., 2015, 87:6212.
[35] Damon D E, Davis K M, Moreira C R, Capone P, Cruttenden R, Badu-Tawiah A K. Anal. Chem., 2016, 88:1878.
[36] Murray I, Walker G, Bereman M S. Analyst, 2016, 141:4065.
[37] Damon D E, Maher Y S, Yin M, Jjunju F P, Young I S, Taylor S, Maher S, Badutawiah A K. Analyst, 2016, 141:3866.
[38] Liu J J, Wang H, Cooks R G, Ouyang Z. Anal. Chem., 2011, 83:7608.
[39] Chan S L F, Wong M Y M, Tang H W, Che C M, Ng K M. Rapid Commun. Mass Spectrom., 2011, 25:2837.
[40] Hu B, Lai Y H, So P K, Chen H W, Yao Z P. Analyst, 2012, 137:3613.
[41] Hu B, So P K, Chen H W, Yao Z P. Anal. Chem., 2011, 83:8201.
[42] Wu M X, Wang H, Zhang J T, Guo Y. Anal. Chem., 2016, 88:9547.
[43] Ji B, Xia B, Gao Y, Ma F, Ding L S, Zhou Y. Anal. Chem., 2016, 88:5072.
[44] Wang H, Liu J J, Cooks R G, Ouyang Z. Angew. Chem., 2010, 122:889.
[45] Demirev P A, Chem A. Anal. Chem., 2012, 85:779.
[46] Yang Q, Manicke N E, Wang H, Petucci C, Cooks R G, Ouyang Z. Anal. Bioanal. Chem., 2012, 404:1389.
[47] Sarkar D, Srimany A, Pradeep T. Analyst, 2012, 137:4559.
[48] Guo Y, Gu Z X, Liu X M, Liu J J, Ma M, Chen B, Wang L P. Phytochem. Anal., 2017, DOI 10.1002/pca.2681.
[49] Liu X M, Gu Z X, Guo Y, Liu J J, Ma M, Chen B, Wang L P. J. Pharm. Biomed. Anal., 2017, 137:204.
[50] Schrage M, Shen Y, Claassen F W, Zuilhof H, Nielen M W, Chen B, van Beek T A. J. Chromatogr. A, 2013, 1317:246.
[51] Deng J W, Yang Y Y. Anal. Chim. Acta, 2013, 785:82.
[52] Liu J J, Gu Z X, Yao S Z, Zhang Z H, Chen B. J. Pharm. Biomed. Anal., 2016, 124:93.
[53] Hamid A M, Jarmusch A K, Pirro V, Pincus D H, Clay B G, Gervasi G, Cooks R G. Anal. Chem., 2014, 86:7500.
[54] Zhang Z P, Cooks R G, Ouyang Z. Analyst, 2012, 137:2556.
[55] Taverna D, Di D L, Mazzotti F, Policicchio B, Sindona G. Biol. Mass. Spectrom., 2013, 48:544.
[56] Li A Y, Wei P, Hsu H C, Cooks R G. Analyst, 2013, 138:4624.
[57] Evard H, Kruve A, Lõhmus R, Leito I. J. Food Compos. Anal., 2015, 41:221.
[58] Jjunju F P M, Maher S, Damon D E, Barrett R M, Syed S U, Heeren R M A, Taylor S, Badutawiah A K. Anal. Chem., 2016, 88:1391.
[59] Zhu X, Huang Z, Gao W, Li X, Li L, Zhu H, Mo T, Huang B, Zhou Z. J. Agric. Food. Chem., 2016, 64:5614.
[1] 薛震,邱波,林广欣,赖丛芳,罗海. 解吸电喷雾电离技术*[J]. 化学进展, 2008, 20(04): 594-601.