English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1105-1119 前一篇   后一篇

• 量子化学专辑 •

多原子体系非绝热动力学的近似理论方法

兰峥岗*1, 邵久书*2   

  1. 1. 中国科学院青岛生物能源与过程研究所 青岛 266101;
    2. 北京师范大学化学学院理论与计算光化学教育部重点实验室 北京 100875
  • 收稿日期:2012-02-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 兰峥岗, 邵久书 E-mail:lanzg@qibebt.ac.cn; jiushu@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(Nos. 21103213,91027013), 中国科学院“百人计划”项目和国家重点基础研究发展计划,(973)项目(No.2011CB808502)资助

Approximate Theoretical Methods for Nonadiabatic Dynamics of Polyatomic Molecules

Lan Zhenggang1, Jiushu Shao2   

  1. 1. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
    2. Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received:2012-02-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
非绝热动力学普遍存在于在光物理和光化学过程中。描述非绝热跃迁需要处理电子-原子核间的相互耦合运动。由于计算量随体系尺度剧烈增长,准确的量子动力学计算目前只适用于描述小分子体系。为了研究多原子分子体系的非绝热过程,近年来发展了一些基于量子-经典动力学近似方法。本文将对典型的这类方法包括经典Ehrenfest方法、面跳跃方法、基于Wigner表示的混合量子-经典方法进行简要的介绍,并讨论如何将量子-经典动力学方法与电子结构从头算手段相结合,模拟非绝热过程。重点阐明各种方法的基本思想和优缺点,并对该领域的发展进行展望。
Nonadiabatic dynamics is ubiquitous in photo-physical and photo-chemical processes. The description of nonadiabatic transitions requires the treatment of coupled electron-nuclei motions. Exact quantum dynamical calculations, due to the insurmountable computational scaling with the size of the system, are only applicable to small molecular systems. In recent years, several approximat methods based on the quantum-classical dynamics were proposed to describe the nonadiabatic dynamics of polyatomic molecular systems. This article provides a concise review of different versions of quantum-classical dynamics approaches including the classical Ehrenfest method, the surface-hopping technique, and the mixed-quantum-classical dynamics in terms of the Winger representation. The pros and cons of the on-the-fly numerical implementation of these schemes combining the ab initio electronic structure calculations are discussed and perspectives on further development of quantum-classical treatment of nonadiabatic dynamics are given. Contents
1 Introduction
2 Hamiltonian and nonadiabatic dynamics
3 Classical Ehrenfest dynamics and surface-hopping dynamics
3.1 Mean-field (or classical Ehrenfest) dynamics
3.2 Surface-hopping dynamics
4 Mixed-quantum-classical dynamics based on wigner representation
5 Conclusions and outlook

中图分类号: 

()
[1] Born M, Oppenheimer J R. Ann. Phys., (Leipzig), 1927,84: 457-484
[2] Hirst D M. Potential Energy Surfaces, London and Philadelphia: Taylor & Francis, 1985
[3] Domcke W, Yarkony D R, Köppel H. Eds Conical Intersections: Electronic Structure, Dynamcis & Spectroscopy, Singapore: World Scientific, 2004.
[4] Baer M. Beyond Born-Oppenheimer, Hoboken, Wiley, 2006
[5] Baer M. Adv. Chem. Phys., 2002, 124: 39-142
[6] Klessinger M, Michl J(Eds.) Excited States and Photochemistry of Organic Molecules, New York: VCH Publishers, 1995
[7] Shukla M K, Leszczynski J(Eds.) Radition Induced Molecular Phenomena in Nucleic Acids, Springer, 2008
[8] Michl J. Top. Curr. Chem., 1974, 46: 1-59
[9] Yarkony D R, Rev. Mod. Phys., 1996, 68: 985-1013
[10] Bernardi F, Robb M A, Olivucci M. Chem. Soc. Rev., 1996, 25: 321-328
[11] Stenholm S. in Quantum Dynamics of Simple Systems (Eds.) Oppo G-L, Barnett S M, Riis E & Wilkinson M). Amsterdam: SUSSP, 1996. 267-313
[12] Domcke W, Stock G. Adv. Chem. Phys., 1997, 100: 1-169
[13] Kuppermann A. Adv. Chem. Phys., 2002, 124: 283-322
[14] Worth G A, Cederbaum L S. Ann. Rev. Phys. Chem., 2004, 55: 127-158
[15] Leach A R. Molecular Modeling: Principles and Applications. 2nd Ed. England: Pearson Education Limited. 2001
[16] Marx D, Hütter J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. NY: Cambridge University Press, 2009
[17] Stock G, Thoss M. Adv. Chem. Phys., 2005, 131: 243-375
[18] Levine B G, Martínez T J. Annu. Rev. Phys. Chem., 2007, 58: 613-634
[19] Martínez T J. Acc. Chem. Res., 2006, 39: 119-126
[20] Ben-Nun M, Martínez T J. Adv. Chem. Phys., 2002, 121: 439-512
[21] Hunter G. Int. J. Quantum Chem., 1975, 9: 237-242
[22] Mead C A, Truhlar D G. J. Chem. Phys., 1982, 77: 6090-6098
[23] Mead C. A. Rev. Mod. Phys., 1992, 64: 51-85
[24] Nitzan A, Jortner J. J. Chem. Phys., 1971, 55: 1355-1368
[25] Engleman R, Jortner J. Mol. Phys., 1970, 18: 145-164
[26] Bixon M, Jortner J. J. Chem. Phys., 1968, 48: 715-726
[27] Bixon M, Jortner J. J. Chem. Phys., 1969, 50: 4061-4070
[28] Niu Y, Peng Q, Deng C, Gao X, Shuai Z. J. Phys. Chem. A, 2010, 114: 7817-7831
[29] Meyer H D, Manthe U, Cederbaum L S. Chem.Phys.Lett., 1990, 165: 73-78
[30] Wang H, Thoss M, Miller W H. J.Chem.Phys., 2001,115: 2979
[31] Wang H, Thoss M. J.Chem.Phys. 2003, 119: 1289
[32] Meyer H D, Gatti F, Worth G A. (Eds). Multidimensional Quantum Dynamics: MCTDH Theory and Applications, Wiley-VCH, 2009
[33] Berry M V. Proc. R. Soc. London A, 1984, 392: 45-57
[34] Shapere A, Wilczek F.(Eds.) Geometric Phases in Physics. Singapore: World Scientific, 1989
[35] Longuet-Higgins H C, Proc. R. Soc. London A, 1975, 392: 147-156
[36] Drukker K. J. Comp. Phys., 1999, 153: 225-272
[37] Meyer H D, Miller W H. J. Chem. Phys., 1979, 70: 3214-3223
[38] Fiedler S L, Eloranta J. Mol. Phys., 2010, 108: 1471-1479
[39] Andrade X, Castro A, Zueco D, Alonso J L, Echenique P, Falceto F, Rubio A. J. Chem. Theory Comput., 2009, 5: 728-742
[40] Tully J C. Faraday Discuss., 1998, 110: 407-419
[41] Tully J C. Int. J. Quantum Chem., 1991, 40: 299-309
[42] Hillery M, O'Connell R F, Scully M O, Wigner E P. Phys. Rep., 1984, 106: 121-167
[43] Lee H W. Phys. Rep., 1995, 259: 147-211
[44] Curtright T L, Zachos C K. arXiv: 1104.5269v1
[45] Verlet L. Phys. Rev., 1967, 159: 98-103
[46] May V, Kühn, O. Charge and Energy Transfer Dynamics in Molecular systems. Berlin: Willey-VCH, 2000
[47] Weiss U. Quantum Dissipative Systems. London: World Scientific, 1993
[48] Jasper A W, Nangia S, Zhu C, Truhlar D G. Acc. Chem. Res., 2006, 39: 101-108
[49] Zhu C, Jasper A W, Truhlar D G. J. Chem. Theor. Comput., 2005, 1: 527-540
[50] Zhu C, Jasper A W, Truhlar D G. J. Chem. Phys., 2004, 120: 5543-5557
[51] Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J. J. Chem. Phys., 1996, 104: 5942-5955
[52] Bedard-Hearn M J, Larsen R E, Schwartz B J. J. Chem. Phys., 2005, 123: art. no. 234106
[53] Bjerre A., Nikitin E E. Chem. Phys. Lett., 1967, 1: 179-181
[54] Tully J C. J. Chem. Phys., 1990, 93: 1061-1071
[55] Blais N C, Truhlar D G. J. Chem. Phys., 1983, 79: 1334-1342
[56] Webster F, Rossky P J, Friesner R A. Comp. Phys. Commun., 1991, 63: 494-522
[57] Chapman S. Adv. Chem. Phys., 1992, 82: 423-483
[58] Hammes-Schiffer S, Tully J C. J. Chem. Phys., 1994, 101: 4657-4667
[59] Dotsinis N L. Quantum Simulations of Complex Many-Body Systems (eds. Grotendorst J, Marx D & Muramatsu A). Jülich: NIC, 2002. 377-397
[60] Doltsinis N L, Marx D. J. Theo. Comp. Chem., 2002, 1: 319-349
[61] Doltsinis N L, Marx D. Phys. Rev. Lett., 2002, 88: art. no. 166402
[62] Barbatti M. WIREs Comp. Mol. Sci., 2011, 1: 620-633
[63] Barbatti M, Shepard R, Lischka H. Computational and Methodological Elements for Nonadiabatic trajectory Dynamics Simulations of Molecules, in Conical Intersections: Theory, Computation and Experiment. (Eds by Domcke W, Yarkony D R, Koppel H) Singapore: World Scientific, 2010
[64] Barbatti M, Granucci G, Persico M, Lischka H. Chem. Phys. Lett., 2005, 401: 276-281
[65] Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksi Dc' M, Lischka H. J. Photochem. Photobiol. A, 2007, 190: 228-240
[66] Barbatti M, Lischka H. J. Am. Chem. Soc., 2008, 130: 6831-6839.
[67] Barbatti M, Aquino A. J. A, Szymczak J. J, Nachtigallová D, Hobza P, Lischka H. PNAS, 2010, 107: 21453-21458
[68] Barbatti M. Ultrafast Molecular Dynamics in Excited States Using Mixed Quantum-Classical Approaches, Habilitation Thesis (University of Vienna, Vienna),(论文)2008
[69] Mitri Dc' R, Werner U, Wohlgemuth M, Seifert G, Bona Dc' i Dc' -Kouteck Dy' V. J. Phys. Chem. A, 2009, 113: 12700-12705
[70] Wohlgemuth M, Bona i Dc' -Kouteck Dy' V, Mitric R. J. Chem. Phys., 2011, 135: art. no. 054105
[71] Mitri Dc' R, Petersen J, Bona i Dc' -Kouteck Dy' V. Nonadiabatic Dynamics “on the fly” in Complex Systems and its Control by Laser Fields, in Conical Intersections Ⅱ (Eds.) by Köppel H, Domcke W, Yarkony D R). Singapore: World Scientific, 2011
[72] Werner U, Mitri Dc' R, Suzuki T, Bona Dc i Dc' -Kouteck Dy' V. Chem. Phys., 2008, 349: 319-324
[73] Mitri Dc' R, Bona Dc i Dc' -Kouteck Dy' V, Pittner J, Lischka H. J. Chem. Phys., 2006, 125: art. no. 024303
[74] Bona Dc i Dc' -Kouteck Dy' V, Mitri Dc' R. Chem. Rev., 2005, 105: 11-66
[75] Granucci G, Persico M, Toniolo A. J. Chem. Phys., 2011, 114: 10608-10615
[76] Cattaneo P, Persico M, J. Am. Chem. Soc., 2001, 123: 7638-7645
[77] Toniolo A, Granucci G, Inglese S, Persico . Phys. Chem. Chem. Phys., 2001, 3: 4266-4279
[78] Granucci G, Persico M. Photochemistry in condensed phase, in Continuum Solvation Models in Chemical Physics: from Theory to Applications (Eds. by Cammi R, Mennucci B). Wiley, 2007
[79] Fabiano E, Lan Z, Lu Y, Thiel W. Conical Intersections: Theory, Computation and Experiment (Eds. by Yarkony D R, Koeppel H, Domcke W.) Singapore: World Scientific, 2011
[80] Fabiano E, Keal T W, Thiel W. Chem. Phys., 2008, 349: 334-347
[81] Lan Z, Fabiano E, Thiel W. J. Phys. Chem. B, 2009, 113: 3548-3555
[82] Lan Z, Fabiano E, Thiel W. ChemPhysChem., 2009 10: 1225-1229
[83] Lan Z, Lu Y, Fabiano E, Thiel W. ChemPhysChem, 2011, 12: 1989-1998
[84] Lu Y, Lan Z, Thiel W. Angewandte Chemie International Edition, 2011, 50: 6864-6867
[85] Weingart O, Lan Z, Koslowski A, Thiel W. J. Phys. Chem. Lett., 2011, 2, 1506-1509
[86] Kazaryan A, Lan Z, Schäfer L, Thiel W and Filatov M. J. Chem. Theory Comput., 2011, 7: 2189-2199
[87] Cui G, Lan Z, Thiel W. J. Am. Chem. Soc., 2012, 134: 1662-1672
[88] Lan Z, Lu Y, Weingart O, Thiel W. J. Phys. Chem. A,doi: 10.1021/jp2117888
[89] Herman M F.J. Chem. Phys., 1984, 81: 754-763
[90] Pechukas P. Phys. Rev., 1969, 181: 174-185
[91] Miller W H, George T. J. Chem. Phys., 1972, 56: 5637-5652
[92] Coker D F, Xiao L. J. Chem. Phys., 1995, 102: 496-510
[93] Jasper A W, Truhlar D G. Conical Intersections: Theory, Computation and Experiment (Eds. by Yarkony D R, Koeppel H, Domcke W.) Singapore: World Scientific, 2011
[94] Tapavicza E, Tavernelli I, Röthlisberger U, Filippi C, Casida M E. J. Chem. Phys., 2008, 129: 124108
[95] Tapavicza E, Tavernelli I, Röthlisberger U, Filippi C, Casida M E. Phys. Rev. Lett., 2007 98: art.no.023001-1
[96] Jasper A W, Stechmann S N, Truhlar D G. J. Chem. Phys., 2002,116: 5424-5431
[97] Granucci G, Persico M. J. Chem. Phys., 2007, 126: art.no.134114
[98] Granucci G, Persico M, Zoccante A. J. Chem. Phys., 2010, 133: art.no.134111
[99] Kube S, Lasser C, Weber M. J. Comp. Phys., 2009, 228: 1947-1962
[100] Osborn T A, Kondratieva M F, Tabisz G C, McQuarrie B R. J Phys. A: Math. Gen., 1999, 32: 4149-4169
[101] Polkovnikov A. Ann. Phys., 2010, 325: 1790-1852
[102] Ando K. Chem. Phys. Lett., 2002, 360: 240-242
[103] Ando K, Santer M. J. Chem. Phys., 2003, 118: 10399-10406
[104] Hanna G, Kapral R. Acc. Chem. Res., 2006, 39: 21-27
[105] Kapral R, Ciccotti G. J. Chem. Phys., 1999, 110: 8919-8929
[106] Nielsen S, Kapral R. Ciccotti G. J. Chem. Phys., 2000, 112: 6543-6553
[107] Sergi A, Kapral R. J. Chem. Phys., 2003, 118: 8566-8575
[108] Horenko I, Salzmann C, Schmidt B, Schütte C. J. Chem. Phys., 2002, 117: 11075-11088
[109] Horenko I, Weiser M, Schmidt B, Schütte C. J. Chem. Phys., 2004, 120: 8913-8923
[110] Martens, C C, Fang J. J. Chem. Phys., 1997, 106: 4918-4930
[1] 杨忠志*. 电负性均衡[J]. 化学进展, 2012, 24(06): 1038-1049.
[2] 张颖, 徐昕*. 新一代密度泛函方法XYG3[J]. 化学进展, 2012, 24(06): 1023-1037.
[3] 苏培峰, 吴玮*. 经典价键理论的从头算计算方法[J]. 化学进展, 2012, 24(06): 1001-1007.
[4] 蒋鸿*. 带隙问题:第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(06): 910-927.
[5] 梅晔, 何晓, 季长鸽, 张大为, 张增辉*. 大分子体系的量子化学分块方法[J]. 化学进展, 2012, 24(06): 1058-1064.
[6] 花伟杰, 高斌, 罗毅*. 软X射线光谱的第一性原理模拟[J]. 化学进展, 2012, 24(06): 964-980.
[7] 郑晓, 徐瑞雪, 许健, 金锦双, 胡洁, 严以京*. 量子耗散与量子输运的级联方程组方法[J]. 化学进展, 2012, 24(06): 1129-1152.
[8] 步宇翔*. 离子液中溶剂化电子的结构及其演化动力学[J]. 化学进展, 2012, 24(06): 1094-1104.
[9] 贾建峰, 武海顺*. Ⅲ-Ⅴ族多面体团簇的稳定性规律[J]. 化学进展, 2012, 24(06): 1008-1022.
[10] 方德彩*. [2+2]环加成反应机理的理论研究[J]. 化学进展, 2012, 24(06): 879-885.
[11] 林晨升, 程文旦*, 张炜龙, 张浩, 何长振. 物质材料的结构预测和光物理性能模拟[J]. 化学进展, 2012, 24(06): 1185-1198.
[12] 吴梦昊, 戴军, 曾晓成*. 基于从头计算法的三维碳同素异形体结构设计[J]. 化学进展, 2012, 24(06): 1050-1057.
[13] 青木百合子*, 顾凤龙*. 增长法在离域体系纳米线中的应用[J]. 化学进展, 2012, 24(06): 886-909.
[14] Enrico Clementi, Giorgina Corongiu(著); 帅志刚;马中云;张天;尚远(译). 从原子到大分子体系的计算机模拟--计算化学50年[J]. 化学进展, 2011, 23(9): 1795-1830.
[15] 郑燕升, 卓志昊, 莫倩, 李军生. 离子液体的分子模拟与量化计算[J]. 化学进展, 2011, 23(9): 1862-1870.