中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 726-739 DOI: 10.7536/PC200694 Previous Articles   Next Articles

Special Issue: 金属有机框架材料

• Original article •

Preparation and Application of MOF-Based Hydrogel Materials

Yuzhou Yang1, Zheng Li1,3,*(), Yanfeng Huang2, Jixian Gong1, Changsheng Qiao3, Jianfei Zhang1,4   

  1. 1 Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textiles Science and Engineering, Tiangong University,Tianjin 300387, China
    2 School of Chemistry and Chemical Engineering, Tiangong University,Tianjin 300387, China
    3 Innovation Research Institute of Wolfberry Industry Co. LTD,Zhongning 755199, China
    4 National Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271001, China
  • Received: Revised: Online: Published:
  • Contact: Zheng Li
  • Supported by:
    Tianjin Key Research and Development Project(20YFZCSN00130); National Key Research and Development Project Foundation of China(2017YFB0309800); National Key Research and Development Project Foundation of China(2016YFC0400503-02); Xinjiang Autonomous Region Major Significant Project Foundation(2016A03006-3); Tianjin Natural Science Foundation(18JCYBJC89600); Science and Technology Guidance Project of China National Textile and Apparel Council(2017011); Innovation Research Institute of Wolfberry Industry Co. LTD(ZNGQCX-B-2019006)
Richhtml ( 246 ) PDF ( 3665 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, metal-organic framework materials(MOFs) have attracted the attention of many researchers because of their excellent framework structure, rich porosity and versatility. A variety of MOFs materials and MOF-based composites have been developed. However, since most MOFs exist in the form of crystals and powders, their rigidity and fragility limit its practical application. Meanwhile, the instability of MOFs in solution can cause the decomposition of the material. Some high-crystallinity MOFs are also very fragile and difficult to process, so researchers combine MOFs with hydrogels and develop many MOF-based hydrogel materials with excellent properties. This review presents current developments of MOF-based hydrogels with emphasis on the specific categories and the synergistic effects of MOF-derived hydrogels between MOFs and additional materials. Particular emphasis is placed on discussing the advantages of MOF-based hydrogels in applications such as sensors, catalysts, water treatment, wound dressings, drug carriers, etc. MOF-based hydrogels can provide valuable guidance for the investigation of MOFs towards practical applications with processability, stability, and easy handling. Specifically, the recent progress of pure MOF hydrogels, MOF@bioorganic macromolecule hydrogels, MOF@biocompatible hydrogels, other MOF-based composite hydrogels, and the applications of these composite materials are summarized.

Contents

1 Introduction

2 Methods to prepare MOF-based hydrogels

2.1 Direct mixing method

2.2 In situ growth

3 Classification of MOF-based hydrogels

3.1 Pure MOF hydrogels

3.2 MOF@bioorganic macromolecule hydrogels

3.3 MOF@biocompatible hydrogels

3.4 Other MOF-based composite hydrogels

4 Application of MOF-based hydrogels

4.1 Sensing

4.2 Catalytic

4.3 Water treatment

4.4 Wound healing

4.5 Drug carrier

5 Conclusion and outlook

Table 1 BET specific surface area and pore volume of different materials[3]
Fig. 1 The preparation processes of MOF-based hydrogels by using the direct mixing method[38]
Fig. 2 The preparation processes of MOF-based hydrogels in situ on hydrogels[38]
Fig. 3 Photographs of(a) Tb-Dy MOF hydrogel,(b) Eu-Tb MOF hydrogel,(c) Eu-Dy MOF hydrogel, and(d) Eu-Tb-Dy MOF hydrogel with mixed-metal ratios of 1∶1 or 1∶1∶1 under sunlight(left) and under excitation at 275 nm(right).(e, f) Transmission electron microscopy(TEM) images with different amplification of Tb-MOF[41]
Table 2 Classification of MOF-based hydrogels
Fig. 4 The schematic representation of the synthesis of UIO-66, loading of Tr molecules into the UIO-66 pores and the general procedure for coating of Tr@UIO-66 with k-Cr[44]
Fig. 5 Schematic diagram of detection of OPs and D-AAs based on MOF-Pt enhanced long-lasting CL of ABEI/Co2+/CS hydrogels[48]
Fig. 6 (i) HKUST-1-alginate composite.(ii) ZIF-8-alginate composite.(iii) MIL-100(Fe)-alginate composite.(iv) ZIF-67- alginate composite.(A) MOF structure.(B) Photographs of the ?berlike metal ion cross-linked hydrogels.(C) Photographs of the corresponding MOF-alginate composites [52]
Fig. 7 (a) Synthesis of DNA/polyacrylamide-hydrogel-coated MOFs loaded with dye or drug. Typical SEM image of the MOFs(b), and the MOFs coated with hydrogel(c)[58]
Fig. 8 Schematic of the self-assembly mechanism of the rGO and ZIF-8 nanoparticles for the formation of ZIF-8/rGO composite hydrogels[62]
Fig. 9 Schematic of the general procedure employed for encapsulating Cu-MOF@IBU with carboxymethylcellulose and IBU release from CMC/Cu-MOF@IBU[67]
Fig. 10 (a) Luminescence responses of HM for the varying β-lactamase.(b) The relationship between intensities of HM and the concentrations of β-lactamase.(c) Photographs of the HM toward the various β-lactamase serum solutions with various concentrations [75]
Fig. 11 (A) Schematic for synthesis of Ag NPs@MIL100(Fe)/GG hybrid hydrogel.(B) Applications for photocatalytic degradation.(C) Oil/Water separation.(D) Antibacterial activity of the Ag NPs@MIL-100(Fe)/GG hybrid hydrogel[57]
Fig. 12 The fabrication and application of the omniphobic MOFs@PVA porous hydrogel membrane.(a) Schematic showing the fabrication of the ZIF8-loaded omniphobic hydrogel membranes by a microfluidic approach and the application of resultant membranes for wound healing.(b) Microscopic optical image of the membrane with uniform pores. The inset shows the CA of a water droplet of 10 μL.(c) Optical image showing a drop of blood on the ZIF-8@PVA hydrogel porous membrane [84]
[1]
Murray L J, Dincă M, Long J R. Chem. Soc. Rev., 2009, 38(5):1294.

doi: 10.1039/b802256a
[2]
Deria P, Bury W, Hod I, Kung C W, Karagiaridi O, Hupp J T, Farha O K. Inorg. Chem., 2015, 54(5):2185.

doi: 10.1021/ic502639v
[3]
Wang R. Master Dissertation of Hubei Minzu University, 2019.
( 王锐. 湖北民族大学硕士论文, 2019.).
[4]
Kaija A R, Wilmer C E. J. Phys. Chem. Lett., 2018, 9(15):4275.

doi: 10.1021/acs.jpclett.8b01421 pmid: 29983053
[5]
Zhao J, Liu X, Wu Y P, Li D S, Zhang Q C. Coord. Chem. Rev., 2019, 391:30.

doi: 10.1016/j.ccr.2019.04.002
[6]
Li D S, Wu Y P, Zhao J, Zhang J, Lu J Y. Coord. Chem. Rev., 2014, 261:1.

doi: 10.1016/j.ccr.2013.11.004
[7]
Zhou W, Huang D D, Wu Y P, Zhao J, Wu T, Zhang J, Li D S, Sun C H, Feng P Y, Bu X H. Angew. Chem. Int. Ed., 2019, 58(13):4227.

doi: 10.1002/anie.v58.13
[8]
Wang X K, Liu J, Zhang L, Dong L Z, Li S L, Kan Y H, Li D S, Lan Y Q. ACS Catal., 2019, 9(3):1726.

doi: 10.1021/acscatal.8b04887
[9]
Yang S J, Kim T, Im J H, Kim Y S, Lee K, Jung H, Park C R. Chem. Mater., 2012, 24(3):464.

doi: 10.1021/cm202554j
[10]
Li S L, Xu Q. Energy Environ. Sci., 2013, 6(6):1656.

doi: 10.1039/c3ee40507a
[11]
Zhao M T, Yuan K, Wang Y, Li G D, Guo J, Gu L, Hu W P, Zhao H J, Tang Z Y. Nature, 2016, 539(7627):76.

doi: 10.1038/nature19763
[12]
Hong Y S, Li F, Sun S L, Sun Q, Ye M. J. Solid State Chem., 2019, 274:315.

doi: 10.1016/j.jssc.2019.03.048
[13]
He C B, Lu K D, Liu D M, Lin W B. J. Am. Chem. Soc., 2014, 136(14):5181.

doi: 10.1021/ja4098862
[14]
Huang Y F, Liu M, Wang Y Q, Li Y, Zhang J M, Huo S H. RSC Adv., 2016, 6(19):15362.

doi: 10.1039/C5RA23132A
[15]
Chen Y F, Li S Q, Pei X K, Zhou J W, Feng X, Zhang S H, Cheng Y Y, Li H W, Han R D, Wang B. Angew. Chem. Int. Ed., 2016, 55(10):3419.

doi: 10.1002/anie.201511063
[16]
Filippousi M, Turner S, Leus K, Siafaka P I, Tseligka E D, Vandichel M, Nanaki S G, Vizirianakis I S, Bikiaris D N, van der Voort P, van Tendeloo G. Int. J. Pharm., 2016, 509(1/2):208.

doi: 10.1016/j.ijpharm.2016.05.048
[17]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Science, 2010, 329(5990):424.

doi: 10.1126/science.1192160
[18]
Lv D, Chen Y W, Li Y J, Shi R F, Wu H X, Sun X J, Xiao J, Xi H X, Xia Q B, Li Z. J. Chem. Eng. Data, 2017, 62(7):2030.

doi: 10.1021/acs.jced.7b00049
[19]
Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd ed. NJ: John Wiley & Sons, 2003.5.
[20]
Chubar N, Gilmour R, Gerda V, Mičušík M, Omastova M, Heister K, Man P, Fraissard J, Zaitsev V. Adv. Colloid Interface Sci., 2017, 245:62.

doi: 10.1016/j.cis.2017.04.013
[21]
Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8(10):3498.

doi: 10.1021/nl802558y pmid: 18788793
[22]
Wang L D, Qi T Y, Wu S Y, Zhang S H, Qi D, Xiao H N. J. Mater. Chem. A, 2017, 5(17):8018.

doi: 10.1039/C7TA01513E
[23]
Möller K, Yilmaz B, Müller U, Bein T. Chem. Mater., 2011, 23(19):4301.

doi: 10.1021/cm103533e
[24]
Zhang K, Liu Z W, Yan X, Hao X L, Wang M, Li C, Xi H X. Langmuir, 2017, 33(50):14396.

doi: 10.1021/acs.langmuir.7b03067 pmid: 29148783
[25]
Neves P, Gomes A C, Amarante T R, Paz F A A, Pillinger M, Gonçalves I S, Valente A A. Microporous Mesoporous Mater., 2015, 202:106.

doi: 10.1016/j.micromeso.2014.09.046
[26]
Huang Y F, Liu Q H, Li K, Li Y, Chang N. J. Sep. Sci., 2018, 41(5):1129.

doi: 10.1002/jssc.v41.5
[27]
Huang Y F, Wang Y Q, Zhao Q S, Li Y, Zhang J M. RSC Adv., 2014, 4(89):47921.

doi: 10.1039/C4RA05515B
[28]
Wei J P, Wang H, Luo T, Zhou Z J, Huang Y F, Qiao B. Anal. Bioanal. Chem., 2017, 409(7):1895.

doi: 10.1007/s00216-016-0136-2
[29]
Tong L, Mo M Y, Du Y L, Jing T. Mod. Chem. Res., 2018(8):188.
( 童琳, 莫名月, 杜奕霖, 景婷. 当代化工研究, 2018(8):188.)
[30]
Li Z. CN 103013106 A, 2013.
[31]
Li Z, He G D, Hua J C, Wu M Q, Guo W, Gong J X, Zhang J F, Qiao C S. RSC Adv., 2017, 7(18):11085.

doi: 10.1039/C6RA26419K
[32]
Xu J, Wu C Y, Qiu Y, Tang X, Zeng D W. Macromol. Rapid Commun., 2020, 41(6):1900573.

doi: 10.1002/marc.v41.6
[33]
Liu H Z, Peng H, Xin Y M, Zhang J Y. Polym. Chem., 2019, 10(18):2263.

doi: 10.1039/C9PY00085B
[34]
Ribeiro S C, de Lima H H C, Kupfer V L, da Silva C T P, Veregue F R, Radovanovic E, Guilherme M R, Rinaldi A W. J. Mol. Liq., 2019, 294:111553.

doi: 10.1016/j.molliq.2019.111553
[35]
Nandakumar D K, Zhang Y X, Ravi S K, Guo N, Zhang C, Tan S C. Adv. Mater., 2019, 31(10):1806730.

doi: 10.1002/adma.v31.10
[36]
Sada K. Bull. Chem. Soc. Jpn., 2018, 91(8):1282.

doi: 10.1246/bcsj.20180096
[37]
Ananthoji R, Eubank J F, Nouar F, Mouttaki H, Eddaoudi M, Harmon J P. J. Mater. Chem., 2011, 21(26):9587.

doi: 10.1039/c1jm11075f
[38]
Wang L Y, Xu H, Gao J K, Yao J M, Zhang Q C. Coord. Chem. Rev., 2019, 398:213016.

doi: 10.1016/j.ccr.2019.213016
[39]
Chakraborty A, Sutar P, Yadav P, Eswaramoorthy M, Maji T K. Inorg. Chem., 2018, 57(23):14480.

doi: 10.1021/acs.inorgchem.8b02545 pmid: 30444363
[40]
Ishiwata T, Kokado K, Sada K. Angew. Chem. Int. Ed., 2017, 56(10):2608.

doi: 10.1002/anie.201611338
[41]
Chen F, Wang Y M, Guo W W, Yin X B. Chem. Sci., 2019, 10(6):1644.

doi: 10.1039/c8sc04732d pmid: 30842827
[42]
Fan W T, Du J J, Kou J F, Zhang Z Y, Liu F Y. J. Rare Earths, 2018, 36(10):1036.

doi: 10.1016/j.jre.2018.03.021
[43]
Alavi F, Emam-Djomeh Z, Yarmand M S, Salami M, Momen S M, Moosavi-Movahedi A A. Food Hydrocoll., 2018, 85:267.

doi: 10.1016/j.foodhyd.2018.07.012
[44]
Javanbakht S, Shadi M, Mohammadian R, Shaabani A, Amini M M, Pooresmaeil M, Salehi R. J. Drug Deliv. Sci. Technol., 2019, 54:101311.
[45]
Wu D B, Xu J Y, Chen Y, Yi M R, Wang Q G. Carbohydr. Polym., 2018, 181:167.

doi: 10.1016/j.carbpol.2017.10.076
[46]
Dou C Y, Li Z, He G D, Gong J X, Liu X M, Zhang J F. Prog. Chem., 2018, 30(8):1161.
( 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. 化学进展, 2018, 30(8):1161.)

doi: 10.7536/PC180122
[47]
Ren S Z, Li C H, Tan Z L, Hou Y, Jia S R, Cui J D. J. Agric. Food Chem., 2019, 67(12):3372.

doi: 10.1021/acs.jafc.8b06182
[48]
Lu Y, Wei M, Wang C C, Wei W, Liu Y. Nanoscale, 2020, 12(8):4959.

doi: 10.1039/D0NR00203H
[49]
HjertÉn S. Biochim. et Biophys. Acta, 1962, 62(3):445.

doi: 10.1016/0006-3002(62)90224-X
[50]
Gao N, Huang J, Wang L Y, Feng J Y, Huang P C, Wu F Y. Appl. Surf. Sci., 2018, 459:686.

doi: 10.1016/j.apsusc.2018.08.092
[51]
Zhang W T, Shi S, Zhu W X, Huang L J, Yang C Y, Li S H, Liu X N, Wang R, Hu N, Suo Y R, Li Z H, Wang J L. ACS Sustainable Chem. Eng., 2017, 5(10):9347.

doi: 10.1021/acssuschemeng.7b02376
[52]
Zhu H, Zhang Q, Zhu S P. ACS Appl. Mater. Interfaces, 2016, 8(27):17395.

doi: 10.1021/acsami.6b04505
[53]
Zhuang Y, Kong Y, Wang X C, Shi B Y. New J. Chem., 2019, 43(19):7202.

doi: 10.1039/c8nj06031b
[54]
Park S H, Kim K, Lim J H, Lee S J. Sep. Purif. Technol., 2019, 212:611.

doi: 10.1016/j.seppur.2018.11.067
[55]
Zhou X Y, Guo Y H, Zhao F, Shi W, Yu G H. Adv. Mater., 2020, 32(52):2007012.

doi: 10.1002/adma.v32.52
[56]
Garai A, Shepherd W, Huo J, Bradshaw D. J. Mater. Chem. B, 2013, 1(30):3678.

doi: 10.1039/c3tb20814a
[57]
Duan C, Liu C R, Meng X, Gao K, Lu W L, Zhang Y L, Dai L, Zhao W, Xiong C Y, Wang W L, Liu Y S, Ni Y H. Carbohydr. Polym., 2020, 230:115642.

doi: 10.1016/j.carbpol.2019.115642
[58]
Chen W H, Liao W C, Sohn Y S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv. Funct. Mater., 2018, 28(8):1870053.

doi: 10.1002/adfm.v28.8
[59]
Lin Y N, Wang X Y, Sun Y L, Dai Y X, Sun W Y, Zhu X D, Liu H, Han R, Gao D D, Luo C N. Sensor Actuat. B: Chem., 2019, 289:56.

doi: 10.1016/j.snb.2019.03.075
[60]
Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H. Small, 2011, 7(14):1876.

doi: 10.1002/smll.201002009 pmid: 21630440
[61]
Ou C F. J. Mater. Sci. Chem. Eng., 2015, 3(12):30.
[62]
Mao J J, Ge M Z, Huang J Y, Lai Y K, Lin C J, Zhang K Q, Meng K, Tang Y X. J. Mater. Chem. A, 2017, 5(23):11873.

doi: 10.1039/C7TA01343D
[63]
Huang P, Yan L F. Chin. J. Chem. Phys., 2016, 29(6):742.

doi: 10.1063/1674-0068/29/cjcp1604073
[64]
Chen W F, Yan L F. Nanoscale, 2011, 3(8):3132.

doi: 10.1039/c1nr10355e
[65]
Yang X, Shi K Y, Zhitomirsky I, Cranston E D. Adv. Mater., 2015, 27(40):6104.

doi: 10.1002/adma.201502284
[66]
Valtakari D, Liu J, Kumar V, Xu C L, Toivakka M, Saarinen J J. Nanoscale Res. Lett., 2015, 10:386.

doi: 10.1186/s11671-015-1093-y pmid: 26437656
[67]
Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H. Int. J. Biol. Macromol., 2018, 119:588.

doi: 10.1016/j.ijbiomac.2018.07.181
[68]
Carson C G, Hardcastle K, Schwartz J, Liu X T, Hoffmann C, Gerhardt R A, Tannenbaum R. Eur. J. Inorg. Chem., 2009, 2009(16):2338.

doi: 10.1002/ejic.v2009:16
[69]
Jin H X, Xu H, Wang N, Yang L Y, Wang Y G, Yu D, Ouyang X K. Materials, 2019, 12(6):942.

doi: 10.3390/ma12060942
[70]
Sultan S, Abdelhamid H N, Zou X D, Mathew A P. Adv. Funct. Mater., 2019, 29(2):1805372.

doi: 10.1002/adfm.v29.2
[71]
Zhu Q, Li Y T, Wang W, Sun G, Yan K L, Wang D. Compos. Commun., 2018, 10:36.

doi: 10.1016/j.coco.2018.05.005
[72]
Xiao J S, Chen S Y, Yi J, Zhang H F, Ameer G A. Adv. Funct. Mater., 2017, 27(1):1604872.

doi: 10.1002/adfm.v27.1
[73]
Zhang X, Yang M, Kohr B, Morgan A, Ozkan C S. Materials Res. Soc. Symp. Proc., 2004:1, 187.
[74]
Mao W Y, Wang Y Q, Qian X N, Xia L Y, Xie H X. ChemBioChem, 2019, 20(4):511.

doi: 10.1002/cbic.v20.4
[75]
Lian X, Yan B. Chem. Commun., 2019, 55(2):241.

doi: 10.1039/C8CC08245F
[76]
Zhao L S, Gan J L, Xia T F, Jiang L C, Zhang J, Cui Y J, Qian G D, Yang Z M. J. Mater. Chem. C, 2019, 7(4):897.

doi: 10.1039/C8TC05154B
[77]
Lin Y N, Sun Y L, Dai Y X, Sun W Y, Zhu X D, Liu H, Han R, Gao D D, Luo C N, Wang X Y. Talanta, 2020, 207:120300.

doi: 10.1016/j.talanta.2019.120300
[78]
Cheng K P, Svec F, Lv Y, Tan T W. Small, 2019, 15(49):1906245.

doi: 10.1002/smll.v15.49
[79]
World Health Organization. Guidelines for Drinking-Water Quality:Fourth Edition Incorporating the First Addendum. GE: World Health Organization, 2017.8.
[80]
Tan S C, Lee H K. Microchimica Acta, 2019, 186(8):545.

doi: 10.1007/s00604-019-3679-z
[81]
Maan O, Song P, Chen N X, Lu Q Y. Adv. Mater. Interfaces, 2019, 6(10):1970062.

doi: 10.1002/admi.v6.10
[82]
Zhu H, Yang X, Cranston E D, Zhu S P. Adv. Mater., 2016, 28(35):7652.

doi: 10.1002/adma.201601351
[83]
Zhao Q, Xie R, Luo F, Faraj Y, Liu Z, Ju X J, Wang W, Chu L Y. J. Membr. Sci., 2018, 549:151.

doi: 10.1016/j.memsci.2017.10.068
[84]
Yao X X, Zhu G S, Zhu P G, Ma J, Chen W W, Liu Z, Kong T T. Adv. Funct. Mater., 2020, 30(13):1909389.

doi: 10.1002/adfm.v30.13
[85]
Yu Y R, Chen G P, Guo J H, Liu Y X, Ren J N, Kong T T, Zhao Y J. Mater. Horiz., 2018, 5(6):1137.

doi: 10.1039/C8MH00647D
[86]
Zhu Y M, Yao Z C, Liu Y S, Zhang W, Geng L L, Ni T. Int. J. Nanomed., 2020, 15:333.

doi: 10.2147/IJN
[87]
Javanbakht S, Hemmati A, Namazi H, Heydari A. Int. J. Biol. Macromol., 2020, 155:876.

doi: 10.1016/j.ijbiomac.2019.12.007
[88]
Karimzadeh Z, Javanbakht S, Namazi H. BioImpacts, 2018, 9(1):5.

doi: 10.15171/bi.2019.02
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[5] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[6] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[7] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[8] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[9] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[10] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[11] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[12] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[15] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.