English
新闻公告
More
化学进展 DOI: 10.7536/PC220543 前一篇   后一篇

• •

自修复有机硅材料的制备策略

叶娟1, 林子谦1, 李伟健1, 向洪平1,*, 容敏智2, 章明秋2   

  1. 1.广东工业大学材料与能源学院 广东省功能软凝聚态物质重点实验室 广州 510006;
    2.中山大学化学学院 广东省高性能树脂基复合材料重点实验室 聚合物复合材料及功能材料教育部重点实验室 广州 510275
  • 收稿日期:2022-05-31 修回日期:2022-06-30 出版日期:2022-09-19 发布日期:2022-09-19
  • 基金资助:
    国家自然科学基金项目(No.52033011)和广东省基础与应用基础研究基金项目(No.2022A1515011972)资助; 作者简介:向洪平,博士,2018年以“特聘副教授”入职广东工业大学材料与能源学院,2017年在美国罗格斯大学访问学者,2015年博士毕业于中山大学化学化工学院高分子物理与化学专业; 主要研究方向为可自修复和可塑再生聚合物材料,高性能(水性)光敏树脂等; 在科研上,主持科研课题10余项,其中国家自然科学青年基金项目1项,省部级项目3项,产学研项目7项,以第一或通讯作者发表SCI论文30篇,共申请发明专利10余件,已授权发明专利5件

Fabrication Strategies to Self-healing Silicone Materials

Juan Ye1, Ziqian Lin1, Weijian Li1, Hongping Xiang1,*, Minzhi Rong2, Mingqiu Zhang2   

  1. 1. Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2022-05-31 Revised:2022-06-30 Online:2022-09-19 Published:2022-09-19
  • Contact: *e-mail: xianghongping@gdut.edu.cn
  • Supported by:
    National Natural Science Foundation of China (No.52033011) and Guangdong Basic and Applied Basic Research Foundation (No.2022A1515011972).
近年来,通过仿生生命体自我修复损伤这一现象而研制的自修复材料,可有效延长材料的使用寿命、提高材料的使用安全性、降低资源浪费,具有巨大的发展潜力。其中,自修复有机硅材料因兼具自我修复的功能和有机硅材料优异的性能,已成为当下的研究热点。由于外界刺激条件如紫外光、温度等是材料实现损伤自我修复的外在驱动力,在很大程度上影响着材料的修复效能,且不同的刺激条件具有不同的优缺点和应用领域。因此,本文将基于自修复过程中外界刺激因素的不同,对自修复有机硅材料尤其是近五年来的最新研究成果进行综述,从外援型和本征型自修复有机硅材料两方面入手,以本征型自修复有机硅材料为重点,并对自修复有机硅材料今后的发展进行了分析展望。
In recent years, inspired by the natural phenomenon that the living organism can automatically repair its damaged skin and bone via itself metabolism, researchers have successfully developed self-healing materials that can self-heal their microcracks. The self-healing of materials can effectively extend the service life of materials, improve working stability and thus reduce the waste of resources. Recently, the self-healable silicone materials originated from the synergistic combination of self-healing function and good properties of silicone materials, have become a research focus in functional materials. Furthermore, since the external stimuli such as UV irradiation, temperature and solvent are the external driving force for materials to fulfill self-healability, and affect largely the self-healing efficiency. More importantly, different stimuli have different advantages and disadvantages, and application fields. Therefore, this study aims to summarize and analyze the research progress of external and intrinsic self-healing silicone materials especially in the past five years according to their external stimuli. The intrinsically self-healing silicone materials that contain different dynamic polysiloxane crosslinking networks activated by different external stimuli, are emphatically discussed. Additionally, a brief prospect for the future development of self-healing silicone materials is also provided.

中图分类号: 

()
[1] Marc P W, Georgette B S, Patrick H.Prog. Polym. Sci., 2018, 83: 97.
[2] Yilgör E, Yilgör I.Prog. Polym. Sci., 2014, 39: 1165.
[3] Markvicka E J, Bartlett M D, Huang X N, Majidi C.Nat. Mater., 2018, 17: 618.
[4] He W Q, Liu P, Zhang J Q, Yao X.Chem-Eur. J., 2018, 24(56): 14864.
[5] Emel Y, Iskender Y.Prog. Polym. Sci., 2014, 39(6): 1165.
[6] Mazurek P, Vudayagiri S, Skov A L.Chem. Soc. Rew., 2019, 48(6): 1448.
[7] Mohammed M G, Kramer R.Adv. Mater., 2017, 29(19): 1604965.
[8] Mazurek P, Brook M A, Skov A L.Langmuir., 2018, 34(38): 11559.
[9] Zhou H, Wang H X, Niu H T, Gestoss A, Wang X G, Lin T. Adv. Mater., 2012, 24(18): 2409.
[10] Khoo C T K. [J].Hand. Surg., 1993, 18(6): 679.
[11] Cheng L, Yu D J, You J J, Long T, Chen S S, Zhou C J.Prog. Chem., 2018, 30(12): 1852.
(程龙, 于大江, 尤加健, 龙腾, 程素素, 周传健. 化学进展, 2018, 30(12): 1852.)
[12] Ying Y, Marek W U.Chem. Soc. Rev., 2014, 42(17): 7446.
[13] Zhang F, Ju P F, Pan M Q, Zhang D W, Huang Y, Li G L, Li X G.Corros. Sci., 2018, 144: 74.
[14] Yang Y, Ding X C, Urban M W.Prog. Polym. Sci., 2015, 49: 34.
[15] Ryan K R, Down M P, Banks C E.Chem. Eng. J., 2021, 403: 126162.
[16] You Y, Peng W L, Xie P, Rong M Z, Zhang M Q, Liu D.Mater. Today., 2020, 33: 45.
[17] Zheng N, Xu Y, Zhao Q, Xie, T. Chem. Rev., 2021, 121(3): 1716.
[18] Wang S, Urban M W.Nat. Rev. Mater., 2020, 5: 562.
[19] Van Tittelboom K, De Belie N.Materials., 2013, 6(6): 2182.
[20] Xia D Y, Wang P, Ji X F, Khashab N M, Sessler J L, Huang F H.Chem. Rev., 2020, 120(13): 6070.
[21] Chakma P, Konkolewicz D.Angew. Chem. Int. Ed., 2019, 58(29): 9682.
[22] Liu Z, Xiao D S, Liu G C, Xiang H P, Rong M Z, Zhang M Q. Prog. Org. Coat., 2021, 159: 106450.
[23] Yi B, Wang S, Hou C S, Huang X, Cui J X, Yao X.Chem. Eng. J., 2021, 405: 127023.
[24] Lin Z Q, Deng H Y, Hou Y, Liu X X, Xu R J, Xiang H P, Peng Z Q, Rong M Z, Zhang M Q. J. Mater. Chem. A., 2022, 10(20): 11019.
[25] Dahlke J, Zechel S, Hager M D, Schubert U S.Adv. Mater. Interfaces., 2018, 5(17): 1800051.
[26] Rao Q Q, Chen K L, Wang C X.RSC. Adv., 2016, 6(59): 53949.
[27] Anahita A, Reza J, Gelareh M.[J].Appl. Polym. Sci., 2021, 139(8): 51670.
[28] Michael W K, Sottos R W, Nancy R S.Adv. Funct. Mater., 2007, 17(14): 2399.
[29] Yin Z H, Guo J H, Qiao J X, Chem X M.Colloid. Polym. Sci., 2020, 298(1): 67.
[30] Song Y K, Jo Y H, Lim Y J, Cho S Y, Yu H C, Ryu B C, Lee S I, Chung C M.ACS. Appl. Mater. Inter., 2013, 5(4): 1378.
[31] Zheng N,Liu J,Wang Y H,Li C M, Zhang Q Y.Prog. Org. Coat., 2021, 151: 106055.
[32] Sun J Y, Li W, Li N, Zhan Y C, Tian L M, Wang Y M. Prog. Org. Coat., 2022, 164: 106689.
[33] Islam, S, Bhat G.Mater. Adv., 2021, 2(6): 1896.
[34] Gharakhloo M, Karbarz M.Eur. Polym. J., 2022, 165: 111004.
[35] Li M, Dai S P, Dong X, Jiang Y Y, Ge J, Xu Y D, Yuan N Y, Ding J N.Langmuir., 2022, 38(4): 1560.
[36] Luo X, Wu Y P, Guo M L, Yang X, Xie L Y, Lai J J, Li Z Y, Zhou H W. J. Appl. Polym. Sci., 2021, 18(33): 50827.
[37] Zhang J S, Zhang C Q, Song F, Shang Q Q, Hu Y, Jia P U, Liu C G, Hu L H, Zhu G Q, Huang J, Zhou Y H.Chem. Eng. J., 2021, 429: 131848.
[38] Chen J, Luo Z Y, An R, Marklund P, Bjorling M, Shi Y J.Small., 2022, 18: 2200532.
[39] Chen M F, Liu Y Q, Wang J, Bai L J, Wang W X, Yang H W, Wei D L.Journal Ludong University., 2018, 34(02): 150.
(陈密发, 刘永泉,王静, 柏良久, 王文香, 杨华伟, 魏东磊. 鲁东大学学报(自然科学版), 2018 , 34(02): 150.)
[40] Zhao L P, Li L S, Yang G, Wei B, Ma Y, Qu F. Biosens. Bioelectron., 2021, 194: 113597.
[41] Shi J Z, Shi Z W, Dong Y C, Wu F, Liu D S.ACS. Appl. Bio. Mater., 2020, 3(5): 2827.
[42] Chen L, Peng H, Wei Y Y, Wang X Y, Jin Y J, Liu H T, Jiang Y.Macromol. Chem. Phys., 2019, 220(18): 1900280.
[43] Liu C, Ma C F, Xie Q Y, Zhang G Z.J. Mater. Chem. A., 2017, 5(30): 15855.
[44] Xiong J Q, Thangavel G, Wang J X, Zhou X R, Lee P S.Sci. Adv., 2020, 6(29): 4246.
[45] Ogliani E., Yu L., Javakhishvili I,Skov A L.RSC. Adv., 2018, 8(15): 8285.
[46] Liu M J, Liu P, Lu G, Lu G, Xu Z T, Yao X.Angew. Chem. Int. Ed., 2018, 57(35): 11242.
[47] Kuhl N, Bode S, Hager M D, Schubert U S.Adv. Polym. Sci., 2016, 273: 1.
[48] Zhao J, Xu R, Luo G X, Wu J, Xia H S.J. Mater. Chem. B., 2016, 4(5): 982.
[49] Wang J K, Lv C, Li Z X, Zheng J P.Macromol. Mater. Eng., 2018, 303(6): 1800089.
[50] Zhao L W, Jiang B, Huang Y D. J. Mater. Sci., 2019, 54(7): 5472.
[51] Zhao L W, Jiang, B, Huang Y D.J. Appl. Polym. Sci., 2019, 136(27): 47725.
[52] Deng Z X, Wang H, Ma P X, Guo B L.Nanoscale., 2020, 12(3): 1224.
[53] Xu X W, Guyse J F R, Jerca V V, Hoogenboom R.Macromol. Rapid Commun., 2020, 41(1): 1900305.
[54] Chen Y, Dai S, Zhu H, Hu H, Yuan N, Ding J.New. J. Chem., 2021, 45(1): 314.
[55] Jia X Y, Mei J F, Lai J C, Li C H, You X Z.Macromol. Rapid. Commun., 2016, 37(12):952.
[56] Rao Y L, Chortos A, Pfattner R, Lissel F, Chiu Y C, Feig V, Xu J, Kurosawa T, Gu X, Wang, C, He M Q, Chun J W.J. Am. Chem. Soc., 2016, 138(18): 6020.
[57] Lai J C, Li L.; Wang D P, Zhang M H, Mo S R, Wang X, Zeng K Y, Li C H, Jiang Q, You X Z, Zuo J L.Nat. Commun., 2018, 9(1): 2725.
[58] Lai J C, Jia X Y, Wang D P, Deng Y B, Zheng P, Li C H, Zuo J L, Bao Z N.Nat. Commun., 2019, 10(1): 1164.
[59] Bai L, Qv P Y, Zheng J P.J. Mater. Sci., 2020, 55(28): 14045.
[60] Tan H Y, Lyu Q Q, Xie Z J, Li M M, Wang K, Wang K, Xiong B J, Zhang L B, Zhu J T.Adv. Mater., 2019, 31(6): 1805496.
[61] Zhang B L, Zhang P, Zhang H Z, Yan C, Zheng Z J, Wu B, Yu Y.Macromol. Rapid. Commun., 2017, 38(15): 1700110.
[62] Lei X Y, Huang Y W, Liang S, Zhao X L, Liu L L.Mater. Lett., 2020, 268, 127598.
[63] Feng Z B, Yu B, Hu J, Zuo H L, Li J P, Sun H B, Ning N Y, Tian M, Zhang L Q.Ind. Eng. Chem. Res., 2019, 58(3): 1212.
[64] Wang N, Feng L, Xu X D, Feng S Y.Macrom. Rapid. Commun., 2022, 43(7): 2100885.
[65] Shi J.; Zhao N.; Yan D.; Song J.; Fu W.; Li Z.J. Mater. Chem. A., 2020, 8(12): 5943.
[66] Liu Z, Hong P, Huang Z Y, Zhang T, Xu R J, Chen L J, Xiang H P, Liu X X.Chem. Eng. J., 2020, 387: 124142.
[67] Guo R W, Su Q, Zhang J W, Dong A J, Lin C G, Zhang J H.Biomacromolecules., 2017, 18(4): 1356.
[68] Deng G H, Li F Y, Yu H X, Liu F Y, Liu C Y, Sun W X, Jiang H F, Chen Y M.ACS. Macro. Lett., 2012, 1(2): 275.
[69] Zhang Y D Y, Ding Z Y, Liu Y, Zhang Y P, Jiang S M.J. Colloid. Interf. Sci., 2021, 582: 825.
[70] Ding J, Qiao Z, Zhang Y S, Wei D R, Chen S P, Tang J J, Chen Lu, Wei D, Sun J, Fan H S.Carbohydr. Polym., 2020, 247: 116686.
[71] Xu W Y, Wang W, Chen S M, Zhang R, Wang Y X, Zhang Q, Yuwen L, Yang W L, Wang L H.[J].Colloid Interf. Sci., 2021, 586: 601.
[72] Huang X W, Wang X F, Shi C Y, Liu Y, Wei Y Y.J. Polym. Res., 2021, 28(1): 1.
[73] Wen J, Jia Z Y, Zhang X P, Pan M W, Yuan J F, Zhu L.Mater. Today. Commun., 2020, 25: 101569.
[74] Wu X X, Li J H, Li G, Ling L, Zhang G P, Sun R, Wong C P.J. Appl. Polym. Sci., 2018, 135(31): 46532.
[75] Zhao L W, Yin Y, Jiang B, Guo Z H, Qu C Y, Huang Y D.J. Colloid. Interf. Sci., 2020, 573: 105.
[76] Cai Y B, Zou H W, Zhou S T, Chen Y, Liang M.ACS Appl. Polym. Mater., 2020, 2(9): 3977.
[77] Zheng P W, McCarthy T [J].J. Am. Chem. Soc., 2012, 134(4): 2024.
[78] Von Szczepanski J, Danner P M,Opris D M.Adv. Sci., 2022, 2202153.
[79] Li X P, Yu R, Zhao T T, Zhang Y, Yang X, Zhao X J, Huang W.Eur. Polym. J., 2018, 108: 399.
[80] Hou Y, Zhu G D, Cui J, Wu N N, Zhao B T, Wu J, Zhao N.J. Am. Chem. Soc., 2022, 144(1): 436.
[81] Burattini S, Colquhoun H M, Greenland B W. Hayes, W.Faraday. Discuss., 2009, 143: 251.
[82] Fawcett A S, Brook M A.Macromolecules., 2014, 47(5): 1656.
[83] Lv C, Zhao K, Zheng J P.Macromol. Rapid. Commun., 2018, 39(8): 1700686.
[84] Lv C, Wang J K, Li Z X, Zhao K F, Zheng J P.Compos. B. Eng., 2019, 177: 107270.
[85] Zhang Y H, Yuan L, Liang G Z, Gu A J. J. Mater. Chem. A., 2018, 6(46): 23425.
[86] Chen G M, Sun Z Y, Wang Y M, Zheng J Y, Wen S F, Zhang J W, Wang L, Hou J, Lin C G, Yue Z F.Prog. Org. Coat., 2020, 140: 105483.
[87] Bai L, Zheng J P.Compos. Sci. Technol., 2020, 190: 108062.
[88] Bai L, Yan X X, Feng B W, Zheng J P.Compos. B. Eng., 2021, 223: 109123.
[89] Shan Y X, Liang S, Mao X K, Lu J, Liu L L, Huang Y W, Yang J X.Soft. Matter., 2021, 17(17): 4643.
[90] Yu H T, Feng Y Y, Gao L, Chen C, Zhang Z X, Feng W. Macromolecules., 2020, 53(16): 7161.
[91] Guo H S, Han Y, Zhao W Q, Yang J, Zhang L.Nat. Commun., 2020, 11(1): 2037.
[92] Shi X R, Zhang K Y, Zhao L W, Jiang B, Huang Y D. Ind. Eng. Chem. Res., 2021, 60: 2154.
[93] Wang Z, Liu Y T, Zhang D J. Gao C H, Wu Y M.Compos. B. Eng., 2021, 224: 109213.
[94] Zhang D D, Ruan Y B, Zhang B Q, Qiao X, Deng G H.Polymer., 2017, 120: 189.
[95] Xiang H P, Yin J F, Lin G H, Liu X X, Rong M Z, Zhang M Q.Chem. Eng. J., 2019, 358: 878.
[96] Otsuka H, Nagano S, Kobashi Y, Maeda T, Takahara A.Chem. Comm., 2010, 46: 1150.
[97] Zhao D L, Liu S S, Wu Y F, Guan T, Sun N, Ren B Y.Prog. Org. Coat., 2019, 133: 289.
[98] Ye J, Lin G H, Lin Z Q, Deng H Y, Huang J J, Xiang H P, Rong M Z, Zhang M Q.Macromol. Mater. Eng., 2022, 307(6): 2100874.
[99] Xiang H P, Rong M Z, Zhang M Q. Polymer., 2017, 108: 339.
[100] Huang Y, Yan J, Wang D, Feng S, Zhou C.Polymers., 2021, 13(21): 3729.
[101] Peng B W, Li H, Li Y T, Lv Z, Wu M, Zhao C X.Chem. Eng. J., 2020, 395: 125079.
[102] Jia X Y, Mei J F, Lai J C, Li C H, You X Z.Chem. Commun., 2015, 51(43): 8928
[103] Zuo Y J, Gou Z M, Zhang C Q, Feng S Y.Macromol. Rapid. Commun., 2016, 37(13): 1052.
[104] Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z N.Adv. Mater., 2016, 28(37): 8277.
[105] Miwa Y, Taira K, Kurachi J, Udagawa T, Kutsumizu S.Nat. Commun., 2019, 10: 1828.
[1] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[2] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.
[3] 程龙, 于大江, 尤加健, 龙腾, 陈素素, 周传健. 有机硅自修复材料[J]. 化学进展, 2018, 30(12): 1852-1862.
[4] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[5] 韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17.
[6] 黄国保, 蒋伟. 有机模板协助构建的动态共价大环[J]. 化学进展, 2015, 27(6): 744-754.
[7] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
[8] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.
[9] 李思超, 韩朋, 许华平*. 自修复高分子材料[J]. 化学进展, 2012, 24(07): 1346-1352.
[10] 祁恒治, 赵蕴慧, 朱孔营, 袁晓燕. 自修复聚合物材料的研究进展[J]. 化学进展, 2011, 23(12): 2560-2567.
[11] 汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料[J]. 化学进展, 2010, 22(12): 2397-2407.
阅读次数
全文


摘要

自修复有机硅材料的制备策略