English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1329-1340 DOI: 10.7536/PC190212 前一篇   

• •

钾离子电池及其最新研究进展

刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽**(), 廖世军**()   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2019-02-13 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 杜丽, 廖世军
  • 基金资助:
    国家重点研发计划项目(No.2017YFB0102900); 国家重点研发计划项目(No.2016YFB0101201); 国家自然科学基金项目(No.21476088); 国家自然科学基金项目(No.21776105); 广东省科学技术厅(No.2015B010106012); 广州市科技创新委员会(No.201504281614372); 广州市科技创新委员会(No.2016GJ006)

Potassium-Ion Battery and Its Recent Research Progress

Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du**(), Shijun Liao**()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2019-02-13 Online:2019-09-15 Published:2019-07-02
  • Contact: Li Du, Shijun Liao
  • About author:
    ** E-mail: (Li Du);
  • Supported by:
    The National Key Research and Development Program of China(No.2017YFB0102900); The National Key Research and Development Program of China(No.2016YFB0101201); The National Natural Science Foundation of China(No.21476088); The National Natural Science Foundation of China(No.21776105); The Guangdong Provincial Department of Science and Technology(No.2015B010106012); The Guangzhou Science Technology and Innovation Committee(No.201504281614372); The Guangzhou Science Technology and Innovation Committee(No.2016GJ006)

钾元素在地壳中的储量丰富、来源广泛, 且物理化学性质与锂元素相似, 在离子电池领域中具有广阔的发展前景。但相比于锂离子, 钾离子半径较大, 在材料体相中的迁移速度较慢, 并使得材料承受较大的结构应力, 从而导致钾离子电池的电化学性能优势不足。因此, 开发具有稳定结构、能够可逆嵌脱的正负极材料和与之相匹配的电解液, 成为钾离子电池目前研究的热点话题。本文主要从钾离子电池的正极材料、负极材料以及电解液三方面来介绍钾离子电池在国内外最新研究进展, 并对钾离子电池未来发展方向做出一定的展望。

Potassium which is abundant in the Earth’s crust and has similar physicochemical properties to lithium, has broad development prospects in the field of ion batteries. However, compared with lithium ion, the potassium-ion radius is relatively larger, leading to the lower migration rate of potassium ion in the material and the material is subjected to larger structural stress. This causes insufficient electrochemical performance advantages of the Potassium-ion battery. Therefore, developing cathode and anode material with stable structure and the capability for reversible reaction, and electrolyte which matches well with material has become a hot topic in the research of Potassium-ion battery. In this review, the latest research progress about cathode material, anode material and electrolyte of Potassium-ion battery at home and abroad are introduced, and we also prospect the future development tendency of Potassium-ion battery.

()
图1 钾离子电池“摇椅式”结构示意图[1]
Fig. 1 Schematic illustration of a “rocking-chair” Potassium-ion battery[1]. Copyright 2017 American Chemical Society
图2 普鲁士蓝及其类似物晶体结构示意图
Fig. 2 Crystal structure schematic of Prussian blue and its analogues
图3 P2型K0.6CoO2微球的精修X射线衍射谱图及其结构示意图[17]
Fig. 3 Rietveld refinement of X-ray diffraction data and schematic structure of the P2-type K0.6CoO2 microspheres[17]. Copyright 2018 American Chemical Society
图4 (A)在C/10电流密度下的第一圈恒流充放电曲线;(B)第一圈循环中选定荷电状态的非原位XRD表征;(C)钾离子嵌入石墨后形成的钾层间化合物的结构示意图[33]
Fig. 4 (A) First-cycle galvanostatic charge and discharge profiles at C/10;(B) Ex situ XRD for selected states of charge in the first-cycle;(C) Structure diagrams of different K-GICs, side view(top row) and top view(bottom row)[33].Copyright 2015 American Chemical Society
表1 近年来关于钾离子电极材料电化学性能汇总表
Table 1 Summary of electrochemical performance about potassium-ion electrode materials in recent years
Molecular formula Electrochemical property ref
Voltage range
(V vs K/K+)
Current Initial capacity
(mAh·g-1)
Cycle performance
K0.220Fe[Fe(CN)6]0.805·4.01H2O 2.0~4.0 V 50 mA·g-1 76.7 93.4%(50 cycles) 2
K1.92Fe[Fe(CN)6]0.94·0.5H2O 2.0~4.3 V 0.1 C 133 92.8%(200 cycles) 4
K1.89Mn[Fe(CN)6]0.92·0.75H2O 2.5~4.6 V 0.2 C 142.6 5
K1.75Mn[Fe(CN)6]0.93·0.16H2O 2.0~4.5 V 30 mA·g-1 137 8
KFe[Fe(CN)6] 2.0~4.5 V 10 mA·g-1 118.7 93.73%(100 cycles) 10
K1.7Fe[Fe(CN)6]0.9 2.0~4.5 V 10 mA·g-1 140 65%(300 cycles) 11
P2-K0.6CoO2 1.7~4.0 V 10 mA·g-1 82 87%(300 cycles) 16
K0.7Fe0.5Mn0.5O2 1.5~4.0 V 20 mA·g-1 178 76%(250 cycles) 19
K0.65Fe0.5Mn0.5O2 1.5~4.2 V 20 mA·g-1 151 78%(350 cycles) 20
V2O5·0.6H2O Xerogel 1.5~4.0 V 50 mA·g-1 224.4 78.3%(100 cycles) 21
P3-K0.69CrO2 1.5~3.8 V 0.1 C 100 65%(1000 cycles) 23
K3V2(PO4)3/C 2.5~4.03 V 20 mA·g-1 77 25
KVPO4F 2.0~5.0 V 0.05 C 92 97%(30 cycles) 26
KVPO4F 3.0~5.0 V 5 mA·g-1 105 27
K3V2(PO4)2F3 2.0~4.6 V 10 mA·g-1 100 97%(100 cycles) 28
PTCDA 1.5~3.5 V 10 mA·g-1 131 66.1%(200 cycles) 29
Poly(anthraquinonyl sulfide) 1.5~3.4 V 20 mA·g-1 211 75%(50 cycles) 31
Graphite 0~1.5 V 20 mA·g-1 246 89%(200 cycles) 35
Nitrogen-Doped Graphene 0~1.5 V 50 mA·g-1 350 36
S-RGO 0.01~3.0 V 50 mA·g-1 3648 79%(50 cycles) 38
Hard Carbon Microspheres 0~1.5 V 28 mA·g-1 262 83%(100 cycles) 39
Ordered mesoporous carbon 0.01~2.6 V 50 mA·g-1 307.4 40
Red P@CN 0.01~2.0 V 100 mA·g-1 715.2 48
MoSe2/N-C 0.01~3.0 V 100 mA·g-1 278.3 50
[1]
Wu X Y, Leonard D P, Ji X L . Chemistry of Materials, 2017, 29:5031. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b01764

doi: 10.1021/acs.chemmater.7b01764     URL    
[2]
Zou X X, Xiong P X, Zhao J, Hu J M, Liu Z T . Xu Y H. Phys. Chem. Chem. Phys., 2017, 19:26495. https://www.ncbi.nlm.nih.gov/pubmed/28951925

doi: 10.1039/c7cp03852f     URL     pmid: 28951925
[3]
Eftekhari A . Journal of Power Sources, 2004, 136:201. https://linkinghub.elsevier.com/retrieve/pii/S0378775304005476

doi: 10.1016/j.jpowsour.2004.05.003     URL    
[4]
Zhang C L, Xu Y, Zhou M, Liang L Y, Dong H S, Wu M H, Yang Y, Lei Y . Advanced Functional Materials, 2017, 27:8.
[5]
Liao J Y, Hu Q, Yu Y T, Wang H Y, Tang Z F, Wen Z Y, Chen C H . Journal of Materials Chemistry A, 2017, 5:19017.
[6]
Xue L G, Li Y T, Gao H C, Zhou W D, Lu X J, Kaveevivitchai W, Manthiram A, Goodenough J B . Journal of the American Chemical Society, 2017, 139:2164. https://www.ncbi.nlm.nih.gov/pubmed/28125230

doi: 10.1021/jacs.6b12598     URL     pmid: 28125230
[7]
Wu X Y, Jian Z L, Li Z F, Ji X L . Electrochemistry Communications, 2017, 77:54.
[8]
Matsuda T, Kim J, Moritomo Y . Journal of the American Chemical Society, 2010, 132:12206. https://www.ncbi.nlm.nih.gov/pubmed/20715831

doi: 10.1021/ja105482k     URL     pmid: 20715831
[9]
Bie X F, Kubota K, Hosaka T, Chihara K, Komaba S . Journal of Materials Chemistry A, 2017, 5:4325.
[10]
Li W J, Chou S L, Wang J Z, Kang Y M, Wang J L, Liu Y, Gu Q F, Liu H K, Dou S X . Chemistry of Materials, 2015, 27:1997.
[11]
Chong S K, Chen Y Z, Zheng Y, Tan Q, Shu C Y, Liu Y N, Guo Z P . Journal of Materials Chemistry A, 2017, 5:22465.
[12]
He G . Nazar L F. ACS Energy Lett., 2017, 2:1122.
[13]
Shadike Z, Shi D R, Tian W, Cao M H, Yang S F, Chen J, Fu Z W . Journal of Materials Chemistry A, 2017, 5:6393.
[14]
Pei Y H, Mu C N, Li H X, Li F J, Chen J . ChemSusChem, 2018, 11:1285. https://www.ncbi.nlm.nih.gov/pubmed/29498226

doi: 10.1002/cssc.201800057     URL     pmid: 29498226
[15]
Hironaka Y, Kubota K, Komaba S . Chem. Commun., 2017, 53:3693. https://www.ncbi.nlm.nih.gov/pubmed/28294241

doi: 10.1039/c7cc00806f     URL     pmid: 28294241
[16]
Kim H, Kim J C, Bo S H, Shi T, Kwon D H, Ceder G . Advanced Energy Materials, 2017, 7:6.
[17]
Deng T, Fan X, Luo C, Chen J, Chen L, Hou S, Eidson N, Zhou X, Wang C . Nano Letters, 2018, 18:1522. https://www.ncbi.nlm.nih.gov/pubmed/29293355

doi: 10.1021/acs.nanolett.7b05324     URL     pmid: 29293355
[18]
Vaalma C, Giffin G A, Buchholz D, Passerini S . [J]. Electrochem. Soc., 2016, 163:A1295.
[19]
Kim H, Seo D H, Kim J C, Bo S H, Liu L, Shi T, Ceder G . Adv. Mater., 2017, 29:6.
[20]
Wang X P, Xu X M, Niu C J, Meng J S, Huang M, Liu X, Liu Z, Mai L Q . Nano Letters, 2017, 17:544. https://www.ncbi.nlm.nih.gov/pubmed/27959573

doi: 10.1021/acs.nanolett.6b04611     URL     pmid: 27959573
[21]
Deng T, Fan X, Chen J, Chen L, Luo C, Zhou X, Yang J, Zheng S, Wang C . Advanced Functional Materials, 2018, 28:1800219. http://doi.wiley.com/10.1002/adfm.201800219

doi: 10.1002/adfm.201800219     URL    
[22]
Tian B, Tang W, Su C, Li Y . ACS Applied Materials & Interfaces, 2018, 10:642. https://www.ncbi.nlm.nih.gov/pubmed/29256595

doi: 10.1021/acsami.7b15407     URL     pmid: 29256595
[23]
Deng L, Niu X, Ma G, Yang Z, Zeng L, Zhu Y, Guo L . Advanced Functional Materials, 2018, 28:8.
[24]
Hwang J Y, Kim J, Yu T Y, Myung S T, Sun Y K . Energy & Environmental Science, 2018, 11:2631.
[25]
Mathew V, Kim S, Kang J W, Gim J, Song J J, Baboo J P, Park W, Ahn D, Han J, Gu L, Wang Y S, Hu Y S, Sun Y K . Kim J. NPG Asia Mater., 2015, 7:1.
[26]
Han J, Li G N, Liu F, Wang M Q, Zhang Y, Hu L Y, Dai C L . Xu M W. Chem. Commun., 2017, 53:1805.
[27]
Chihara K, Katogi A, Kubota K, Komaba S . Chem. Commun., 2017, 53:5208. https://www.ncbi.nlm.nih.gov/pubmed/28443861

doi: 10.1039/c6cc10280h     URL     pmid: 28443861
[28]
Kim H, Seo D H, Bianchini M, Clement R J, Kim H, Kim J C, Tian Y S, Shi T, Yoon W S, Ceder G . Advanced Energy Materials, 2018, 8:12.
[29]
Lin X, Huang J, Tan H, Huang J, Zhang B . Energy Storage Materials, 2019, 16:97.
[30]
Chen Y N, Luo W, Carter M, Zhou L H, Dai J Q, Fu K, Lacey S, Li T, Wan J Y, Han X G, Bao Y P, Hu L B . Nano Energy, 2015, 18:205.
[31]
Xing Z Y, Jian Z L, , Luo W, Qi Y T, Bommier C, Chong E S, Li Z F . Hu Ll b, Ji X L.[J]. Energy Storage Materials, 2016, 2:63. https://linkinghub.elsevier.com/retrieve/pii/S2405829715300751

doi: 10.1016/j.ensm.2015.12.001     URL    
[32]
Jian Z L, Liang Y L . Rodriguez-Perez I A, Yao Y, Ji X L. Electrochemistry Communications, 2016, 71:5. https://www.ncbi.nlm.nih.gov/pubmed/28823162

doi: 10.1021/jacs.7b06313     URL     pmid: 28823162
[33]
Jian Z L, Luo W, Ji X L . Journal of the American Chemical Society, 2015, 137:11566. https://www.ncbi.nlm.nih.gov/pubmed/26333059

doi: 10.1021/jacs.5b06809     URL     pmid: 26333059
[34]
Komaba S, Hasegawa T, Dahbi M, Kubota K . Electrochemistry Communications, 2015, 60:172. https://linkinghub.elsevier.com/retrieve/pii/S1388248115002465

doi: 10.1016/j.elecom.2015.09.002     URL    
[35]
Luo W, Wan J Y, Ozdemir B, Bao W Z, Chen Y N, Dai J Q, Lin H, Xu Y, Gu F, Barone V, Hu L B . Nano Letters, 2015, 15:7671. https://www.ncbi.nlm.nih.gov/pubmed/26509225

doi: 10.1021/acs.nanolett.5b03667     URL     pmid: 26509225
[36]
Zhao J, Zou X X, Zhu Y J, Xu Y H, Wang C S . Advanced Functional Materials, 2016, 26:8103.
[37]
Share K, Cohn A P, Carter R, Rogers B, Pint C L . ACS Nano, 2016, 10:9738. https://www.ncbi.nlm.nih.gov/pubmed/27718549

doi: 10.1021/acsnano.6b05998     URL     pmid: 27718549
[38]
Ma G Y, Huang K S, Ma J S, Ju Z C, Xing Z, Zhuang Q C . Journal of Materials Chemistry A, 2017, 5:7854.
[39]
Li J, Qin W, Xie J, Lei H, Zhu Y, Huang W, Xu X, Zhao Z, Mai W . Nano Energy, 2018, 53:415.
[40]
Jian Z L, Xing Z Y, Bommier C, Li Z F, Ji X L . Advanced Energy Materials, 2016, 6:5.
[41]
Wang W, Zhou J, Wang Z, Zhao L, Li P, Yang Y, Yang C, Huang H, Guo S . Advanced Energy Materials, 2018, 8:1701648.
[42]
Bin D S, Lin X J, Sun Y G, Xu Y S, Zhang K, Cao A M, Wan L J . Journal of the American Chemical Society, 2018, 140:7127. https://www.ncbi.nlm.nih.gov/pubmed/29771119

doi: 10.1021/jacs.8b02178     URL     pmid: 29771119
[43]
Kishore B, Venkatesh G, Munichandraiah N . [J]. Electrochem. Soc., 2016, 163:A2551.
[44]
Han J, Niu Y, Bao S J, Yu Y N, Lu S Y, Xu M . Chem. Commun., 2016, 52:11661. https://www.ncbi.nlm.nih.gov/pubmed/27711292

doi: 10.1039/c6cc06177j     URL     pmid: 27711292
[45]
Lian P C, Dong Y F, Wu Z S, Zheng S H, Wang X H, Wang S, Sun C L, Qin J Q, Shi X Y, Bao X H . Nano Energy, 2017, 40:1.
[46]
Sultana I, Ramireddy T, Rahman M M, Chen Y . Glushenkov A M. Chem. Commun., 2016, 52:9279.
[47]
Zhang W, Mao J, Li S, Chen Z, Guo Z . Journal of the American Chemical Society, 2017, 139:3316. https://www.ncbi.nlm.nih.gov/pubmed/28211269

doi: 10.1021/jacs.6b12185     URL     pmid: 28211269
[48]
McCulloch W D, Ren X, Yu M, Huang Z, Wu Y . ACS Applied Materials & Interfaces, 2015, 7:26158. https://www.ncbi.nlm.nih.gov/pubmed/26550678

doi: 10.1021/acsami.5b08037     URL     pmid: 26550678
[49]
Xiong P X, Bai P X, Tu S B, Cheng M R, Zhang J F, Sun J, Xu Y H . Small, 2018, 14:9.
[50]
Jin T, Li H, Li Y, Jiao L, Chen J . Nano Energy, 2018, 50:462.
[51]
Sultana I, Rahman M M, Mateti S, Ahmadabadi V G, Glushenkov A M, Chen Y . Nanoscale, 2017, 9:3646. https://www.ncbi.nlm.nih.gov/pubmed/28247885

doi: 10.1039/c6nr09613a     URL     pmid: 28247885
[52]
Ge J, Fan L, Wang J, Zhang Q, Liu Z, Zhang E, Liu Q, Yu X, Lu B . Advanced Energy Materials, 2018, 8:7.
[53]
Yu Q, Jiang B, Hu J, Lao C Y, Gao Y, Li P, Liu Z, Suo G, He D, Wang W A, Yin G . Advanced Science, 2018, 5:1800782. https://www.ncbi.nlm.nih.gov/pubmed/30356990

doi: 10.1002/advs.201800782     URL     pmid: 30356990
[54]
Hosaka T, Kubota K, Kojima H, Komaba S . Chem. Commun., 2018, 54:8387. http://xlink.rsc.org/?DOI=C8CC04433C

doi: 10.1039/C8CC04433C     URL    
[55]
Dugas R, Ponrouch A, Gachot G, David R, Palacin M R, Tarascon J M . [J]. Electrochem. Soc., 2016, 163:A2333.
[56]
Lei K X, Li F J, Mu C N, Wang J B, Zhao Q, Chen C C, Chen J . Energy & Environmental Science, 2017, 10:552.
[1] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[2] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[5] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[11] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[14] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
阅读次数
全文


摘要

钾离子电池及其最新研究进展