English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1238-1250 DOI: 10.7536/PC190211 前一篇   后一篇

• •

Ⅰ-Ⅲ-Ⅵ 族量子点的制备及其在照明显示领域的应用

徐彦乔1, 陈婷1,2,**(), 王连军2,3,**(), 江伟辉1,2, 江莞2,3, 谢志翔1   

  1. 1. 景德镇陶瓷大学材料科学与工程学院 景德镇 333001
    2. 国家日用及建筑陶瓷工程技术研究中心 景德镇 333001
    3. 东华大学材料科学与工程学院 上海 201620
  • 收稿日期:2019-02-11 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 陈婷, 王连军
  • 基金资助:
    国家自然科学基金项目(No.51402135); 国家自然科学基金项目(No.51432004); 国家自然科学基金项目(No.51774096); 江西省杰出青年人才资助计划(No.20171BCB23071); 江西省自然科学基金项目(No.20181BAB216009); 江西省自然科学基金项目(No.20171BAB216008); 江西省教育厅基金项目(No.GJJ180708); 江西省教育厅基金项目(No.GJJ180707)

From Preparation to Lighting and Display Applications of Ⅰ-Ⅲ-Ⅵ Quantum Dots

Yanqiao Xu1, Ting Chen1,2,**(), Lianjun Wang2,3,**(), Weihui Jiang1,2, Wan Jiang2,3, Zhixiang Xie1   

  1. 1. School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
    2. National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen 333001, China;
    3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2019-02-11 Online:2019-09-15 Published:2019-07-02
  • Contact: Ting Chen, Lianjun Wang
  • About author:
    ** E-mail: (Ting Chen);
    (Lianjun Wang)
  • Supported by:
    The National Natural Science Foundation of China(No.51402135); The National Natural Science Foundation of China(No.51432004); The National Natural Science Foundation of China(No.51774096); The Fund for Distinguished Young Scholars of Jiangxi Province(No.20171BCB23071); The Natural Science Foundation of Jiangxi Province(No.20181BAB216009); The Natural Science Foundation of Jiangxi Province(No.20171BAB216008); The Science Foundation of Jiangxi Provincial Department of Education(No.GJJ180708); The Science Foundation of Jiangxi Provincial Department of Education(No.GJJ180707)

半导体量子点因其独特的光电性质, 在发光二极管、太阳能电池和生物标记等领域展现出广阔的应用前景。传统的Ⅱ-Ⅵ和Ⅲ-Ⅴ族二元量子点具有优异的发光性能, 但其所含的Cd、Pb等有毒重金属元素极大制约了大规模商业应用。Ⅰ-Ⅲ-Ⅵ 族多元量子点作为近年来兴起的一类新型荧光材料, 其具有无毒、带隙可调、Stokes位移大、荧光寿命长等特性, 被认为是替代传统二元量子点的理想材料, 因此成为了科研工作者研究的热点。本文详细介绍了Ⅰ-Ⅲ-Ⅵ 族量子点的研究进展, 从该类量子点的基本性质出发阐明其光学性能的调控机制, 重点介绍了近年来该类量子点的有机相及水相制备技术, 对其在照明显示领域应用的研究进展进行了总结, 并与其他类型量子点器件的最新研究现状进行了对比。最后, 分析了Ⅰ-Ⅲ-Ⅵ 族量子点发展过程中有待解决的主要问题, 并对其今后的发展方向进行了展望。

Semiconductor quantum dots(QDs) present great potential in applications of light emitting diodes, solar cells and bio-labeling fields owing to their unique optical and electronic properties. Although the traditional Ⅱ-Ⅵ and Ⅲ-Ⅴ type QDs possess appealing emission properties, the intrinsic toxicity of heavy metal elements, such as cadmium and lead, severely sheds doubt on their large-scale commercial applications. As a new kind of fluorescent material that has emerged in recent years, Ⅰ-Ⅲ-Ⅵ multiple QDs are considered as promising alternatives to the traditional binary QDs due to their low toxicity, tunable bandgaps, large Stokes shifts and long photoluminescence lifetime, which have been receiving considerable attention of researchers. In this review, we highlight the current research progress on theⅠ-Ⅲ-Ⅵ QDs. Firstly, the regulation mechanism of the luminescent properties is illuminated on the basis of their structure and composition. Moreover, the emphasis is focused on the current research of the organic and aqueous preparation pathways in recent years. Simultaneously, their primary applications in the lighting and display fields are summarized, and the comparison of the latest research progress of devices betweenⅠ-Ⅲ-Ⅵ QDs and other QDs is made. Finally, we outline the challenges concerning the development of the luminescentⅠ-Ⅲ-Ⅵ QDs and conclude the main future research directions.

()
图1 (a) 黄铜矿结构、(b) 闪锌矿结构和(c) 纤锌矿结构的晶胞结构示意图[46]
Fig. 1 Unit cell of the(a) chalcopyrite structure, (b) zinc blende structure, and(c) wurtzite structure[46]. Copyright 2013, Royal Society of Chemistry
图2 CuInS2量子点的发射机制示意图[63]
Fig. 2 Emission mechanism of CuInS2 quantum dots[63]. Copyright 2015, Elsevier
表1 Ⅰ-Ⅲ-Ⅵ 族量子点的有机相制备方法
Table 1 Organic preparation methods forⅠ-Ⅲ-Ⅵ type quantum dots
Materials Precursors, ligands, solvents Methods Conditions Emission
peak/nm
Size/nm QY/% ref
Cu-Fe-S/CdS Cu(Ac)2, FeCl2, S, DDT, OA, ODE Hot injection 180 ℃, Ar 520~1000 3~15 87 15
Cu-In-S/ZnS Cu(Ac)2, In(Ac)3, S, TOP, DDT, OA, SA, ODE Hot injection 180 ℃ 500~950 2~20 30 18
Cu-Zn-In-S CuAc, In(Ac)3, Zn(Ac)2, S, DDT, OA, ODE Hot injection 230 ℃, Ar 620~750 2~7 70 21
Zn-Ag-In-S/Zn-In-S/ZnS AgNO3, In(acac)3, HZAD, S, OLA, OA, OTT, ODE Hot injection 180 ℃, N2 511~590 3.3~3.9 87 26
Cu-In-S/ZnS CuI, In(Ac)3, Zn(Ac)2, S, OTT, OA, ODE Hot injection 230 ℃, N2 577~602 1.9~7.1 89 27
Zn-Cu-In-S CuI, InI3, S, DECZn, TOP, OLA, ODE Heating up 160~280 ℃,
N2
570~800 3~6 5 13
Cu-In/Ga-S/ZnS CuI, GaI3, In(Ac)3, Zn(Ac)2, S, DDT, OA, OLA, ODE Heating up 240 ℃, N2 495~536 4.8~6.3 85 16
Cu-In-Zn-S CuI, In(Ac)3, Zn(St)2, DDT, TOP, ODE Heating up 230 ℃ 590~640 2.7 80 19
Cu-Zn-In-S/ZnS Cu(Ac)2, In(Ac)3, Zn(Ac)2, S, DDT, OAm, ODE Heating up 220 ℃ 450~810 2.4~3.9 85 22
Cu-In-S/ZnS CuI, In(Ac)3, Zn(St)2, DDT, ODE Heating up 230 ℃, Ar 665~717 2~4 78 23
Zn-Cu-In-S/ZnS CuI, In(Ac)3, Zn(SA)2, DDT, OA, ODE Heating up 240 ℃, Ar 600~815 3.2~6.2 50 28
Zn-Ag-In-S AgNO3, In(Ac)3, Zn(St)2, S, DDT, TOP, OA, ODE Heating up 120~210 ℃,
N2
520~680 5~7.4 41 29
Cu-In-Zn-S Cu(Ac)2, In(Ac)3, Zn(Ac)2, DDT, OLA, ODE Heating up 230 ℃, Ar 520~700 2.5 76 57
Cu-In-S/ZnS
Cu-In-S/CdS
CuI, In(Ac)3, Zn(St)2, Cd-OA, S, DDT Heating up 230 ℃, Ar 630~780 2.2~3.3 86 62
Cu-In-S/ZnS CuI, In(Ac)3, Zn(Ac)2, DDT, ODE Solvothermal 180 ℃ 545~614 1.4~3.6 65 55
Cu-In-S/ZnS CuI, In(Ac)3, Zn(Ac)2, S, OA, OAm, DDT, ODE Microwave 190~240 ℃ 610~712 2.7~3.2 56 75
Cu-In-S (PPh3)2CuIn(Set)4, C6H14S, TOPO, DOP Thermal decomposition 200 ℃, Ar 700 2~4 4.4 17
Ag-In-S AgNO3, In(NO3)3, NaS2CN(C2H5)2, OCA, OLA Thermal decomposition 180 ℃ 650~830 3.8~4.3 70 76
表2 Ⅰ-Ⅲ-Ⅵ 族量子点的水相制备方法
Table 2 Aqueous preparation methods forⅠ-Ⅲ-Ⅵ type quantum dots
Materials Precursors, ligands Methods Conditions Emission
peak/nm
Size/nm QY/% ref
Cu-In-S/ZnS CuCl2·2H2O, InCl3, Zn(Ac)2·2H2O, Na2S·2H2O, SC, GSH Heating up 95 ℃ 543~625 2.1~3.8 38 31
Zn-Ag-In-S AgNO3, Zn(Ac)2, In(Ac)3, Na2S2O3, Thiourea, Na2S·9H2O, GSH Heating up 100 ℃ 525~625 2.0~2.5 30 37
Zn-Ag-In-Se AgNO3, Zn(Ac)2, In(Ac)3, Na2SeSO3, GSH Heating up 100 ℃ 450~760 3.5~4.0 30 38
Ag-In-S/ZnS AgNO3, InCl3, Na2S·9H2O, Zn(Ac)2, MAA Heating up 90~
95 ℃
580~770 2.0~3.5 47 39
Cu-In-Zn-S CuCl2·2H2O, InCl3·4H2O, Zn(Ac)2·2H2O, Na2S, SC, GSH Heating up 95 ℃ 588~668 3.5~3.9 5.95 40
Ag-In-S-ZnS AgNO3, In(NO3)3, Zn(NO3)2, Na2S, GSH, PAA, MAA Heating up 100 ℃ 525~640 3.0 20 59
Zn-Cu-In-S CuCl2, InCl3·4H2O, Zn(Ac)2, Na2xH2O, MPA Heating up 100 ℃ 600~700 4.0~7.0 4.7 61
Ag-In-S/ZnS AgNO3, In(OH)3, TGA, Gelatin, (NH4)2S, ZnCl2 Electric pressure cooker 120 ℃ 535~607 2.4~2.9 39.1 32
Cu-In-Se/ZnS
Ag-In-Se/ZnS
CuCl2·2H2O, AgNO3, In(OH)3, ZnO, TGA, Se, NaBH4, Gelatin Electric pressure cooker 120 ℃ 582~686 3.6, 3.9 23.3 33
Ag-In-S/ZnS AgNO3, In(OH)3, ZnCl2, (NH4)2S, TGA, Gelatin Electric pressure cooker 120 ℃ 570~615 3.0 57 34
Ag-In-S/ZnS AgNO3, In(OH)3, Zn(NO3)2·6H2O, (NH4)2S, TGA, Gelatin, PVA Electric pressure cooker 120 ℃ 560~575 2.5~3.4 64 35
Ag-In-S AgNO3, InCl3, PEI, Na2S·9H2O Electric pressure cooker 120 ℃ 550~560 3.1 32 36
Cu-In-S/ZnS CuCl2, InCl3, Na2S, SC, TGA Electric pressure cooker 120 ℃ 545~610 3.5~5.1 40 65
Cu-In-S/ZnS CuCl2·2H2O, InCl3, Zn(Ac)2·2H2O, Thiourea, SC, GSH Microwave 95 ℃ 543~700 3.2~4.8 43 58
Ag-In-S/ZnS AgNO3, In(NO3)3·4H2O, Zn(Ac)2·2H2O, Na2S, GSH Microwave 100 ℃ 553~570 2.5 40 66
Zn-Ag-In-S AgAc, In(Ac)3, Zn(Ac)2, Na2S, GSH One-step 95 ℃ 560~660 3.0~4.0 15 77
Cu-Zn-In-S CuCl2·2H2O, InCl3, Zn(Ac)2·2H2O, Na2S, Thiourea, SC, GSH Hydrothermal 150 ℃ 465~700 4.6~5.5 25~35 78
图3 CIZS量子点的(a) 吸收谱、(b) 归一化发射谱、(c) 紫外灯下的照片、(d) 能级示意图[78]
Fig. 3 (a) Absorption spectra, (b) normalized PL spectra, (c) the digital photograph under UV lamp and(d) schematic energy level diagram of CZIS QDs[78]. Copyright 2015, Royal Society of Chemistry
图4 (a) 大规模制备CISe/ZnS和AISe/ZnS量子点的示意图、(b) 商用高压锅和(c) 量子点溶液的电子照片[33]
Fig. 4 (a) Schematic for the large-scale preparation process of CISe/ZnS and AISe/ZnS core/shell QDs, (b) the digital photographs of a commercial electric pressure cooker and(c) the crude dispersion of the as-prepared core/shell QDs[33]. Copyright 2015, Royal Society of Chemistry
表3 Ⅰ-Ⅲ-Ⅵ 族量子点pc-WLED器件的性能参数
Table 3 Parameters of pc-LED by usingⅠ-Ⅲ-Ⅵ quantum dots
图5 不同比例CGS和CIS组装LED的(a) 电致发光光谱、(b) 点亮照片、(c) CRI、CCT、LE变化曲线和(d) CIE坐标[16]
Fig. 5 (a) EL spectra, (b) operating images, (c) variations of CRI, CCT, luminous efficacy and(d) CIE color coordinates of LEDs fabricated with different weight ratios between CGS and CIS QDs[16]. Copyright 2017, Royal Society of Chemistry
表4 Ⅰ-Ⅲ-Ⅵ 族量子点电致发光器件的性能参数
Table 4 Parameters of electroluminescent devices by usingⅠ-Ⅲ-Ⅵ quantum dots
图6 EL器件的(a) 结构示意图、(b) 电流效率与外量子效率随亮度变化图、(c) 各功能层的相对能级图和(d) 随电压变化的EL谱[27]
Fig. 6 (a) Structure, (b) current efficiency and external quantum efficiency as a function of luminance, (c) corresponding energy level diagram, and(d) EL spectra with increasing driving voltage of EL devices[27]. Copyright 2016, American Chemical Society
[1]
Peng X, Schlamp M C, Kadavanich A V, Alivisatos A P . J. Am. Chem. Soc., 1997, 119(30):7019.
[2]
Peng X, Manna L, Yang W, Wickham J, Scher E, Kadacanich A, Alivisatos A P . Nature, 2000, 404(6773):59. https://www.ncbi.nlm.nih.gov/pubmed/10716439

doi: 10.1038/35003535     URL     pmid: 10716439
[3]
Li Z, Ji Y, Xie R, Grisham S Y, Peng X . J. Am. Chem. Soc., 2011, 133(43):17248. https://www.ncbi.nlm.nih.gov/pubmed/21939230

doi: 10.1021/ja204538f     URL     pmid: 21939230
[4]
Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X . Bioconjugate Chem., 2010, 21(4):604. https://www.ncbi.nlm.nih.gov/pubmed/20369817

doi: 10.1021/bc900323v     URL     pmid: 20369817
[5]
Tang F, Pang D W, Chen Z, Shao J B, Xiong L H, Xiang Y P, Xiong Y, Wu K, Ai H W, Zhang H, Zheng X L, Lv J R, Liu W Y, Hu H B, Mei H, Zhang Z, Sun H, Xiang Y, Sun Z Y . Nanoscale, 2016, 8(8):4688. https://www.ncbi.nlm.nih.gov/pubmed/26853517

doi: 10.1039/c5nr07424j     URL     pmid: 26853517
[6]
Lee Y L, Lo Y S . Adv. Funct. Mater., 2009, 19(4):604.
[7]
Peng W, Du J, Pan Z, Nakazawa N, Sun J, Du Z, Shen G, Yu J, Hu J S, Shen Q, Zhong X . ACS Appl. Mater. Interfaces, 2017, 9(6):5328. https://www.ncbi.nlm.nih.gov/pubmed/28092935

doi: 10.1021/acsami.6b14649     URL     pmid: 28092935
[8]
Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X . Nature, 2014, 515(7525):96. 8e44a249-aaa4-4296-b796-ae6d210e7f89http://dx.doi.org/10.1038/nature13829

doi: 10.1038/nature13829     URL    
[9]
Park S H, Hong A, Kim J H, Yang H, Lee K . ACS Appl. Mater. Interfaces, 2015, 7(12):6764. https://www.ncbi.nlm.nih.gov/pubmed/25757746

doi: 10.1021/acsami.5b00166     URL     pmid: 25757746
[10]
Siramdas R, McLaurin E J . Chem. Mater., 2017, 29(5):2101.
[11]
Deng Z, Lie F L, Shen S, Ghosh I, Mansuripur M, Muscat A . Langmuir, 2009, 25(1):434.
[12]
Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q . ACS Nano, 2012, 6(5):3695. https://www.ncbi.nlm.nih.gov/pubmed/22515909

doi: 10.1021/nn301218z     URL     pmid: 22515909
[13]
Nakamura H, Kato W, Uehara M, Nose K, Omata T, Matsuo S O Y, Miyazaki M, Maeda H . Chem. Mater., 2006, 18(14):3330.
[14]
Cichy B, Wawrzynczyk D, Samoc M, Stręk W . J. Mater. Chem. C, 2017, 5(1):149.
[15]
Bhattacharyya B, Pandey A . J. Am. Chem. Soc., 2016, 138(32):10207. https://www.ncbi.nlm.nih.gov/pubmed/27447297

doi: 10.1021/jacs.6b04981     URL     pmid: 27447297
[16]
Kim J H, Kim B Y, Jang E P, Han C Y, Jo J H, Do Y R, Yang H . J. Mater. Chem. C, 2017, 5(27):6755.
[17]
Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F . J. Phys. Chem. B, 2004, 108(33):12429.
[18]
Xie R, Rutherford M, Peng X . J. Am. Chem. Soc., 2009, 131(15):5691. https://www.ncbi.nlm.nih.gov/pubmed/19331353

doi: 10.1021/ja9005767     URL     pmid: 19331353
[19]
Trizio L D, Prato M, Genovese A, Casu A, Povia M, Simonutti R, Alcocer M J P, D’Andrea C, Tassone F, Manna L, Manna L . Chem. Mater., 2012, 24(12):2400. https://www.ncbi.nlm.nih.gov/pubmed/23016764

doi: 10.1162/jocn_a_00302     URL     pmid: 23016764
[20]
Xiang W, Ma X, Luo L, Cai W, Xie C, Liang X . Mater. Chem. Phys., 2015, 149/150(4):437.
[21]
Zhang J, Xie R, Yang W . Chem. Mater., 2011, 23(14):3357. https://www.ncbi.nlm.nih.gov/pubmed/28005300

doi: 10.1002/chem.201604818     URL     pmid: 28005300
[22]
Zhang W, Lou Q, Ji W, Zhao J, Zhong X . Chem. Mater., 2014, 26(2):1204.
[23]
Song W S, Yang H . Chem. Mater., 2012, 24(10):1961.
[24]
Chevallier T, Blevennec G L, Chandezon F . Nanoscale, 2016, 8(14):7612. https://www.ncbi.nlm.nih.gov/pubmed/26985657

doi: 10.1039/c5nr07082a     URL     pmid: 26985657
[25]
Jo D Y, Yang H . Chem. Commun., 2016, 52(4):709. https://www.ncbi.nlm.nih.gov/pubmed/26579551

doi: 10.1039/c5cc07968c     URL     pmid: 26579551
[26]
Ko M, Yoon H C, Yoo H, Oh J H, Yang H, Do Y R . Adv. Funct. Mater., 2017, 27(4):1602638.
[27]
Kim J H, Yang H . Chem. Mater., 2016, 28(17):6329.
[28]
Guo W, Chen N, Dong C, Zhang B, Hu C, Chang J . Theranostics, 2013, 3(2):99. https://www.ncbi.nlm.nih.gov/pubmed/23422883

doi: 10.7150/thno.5361     URL     pmid: 23422883
[29]
Tang X, Ho W B A, Xue J M . J. Phys. Chem. C, 2012, 116(17):9769.
[30]
Speranskaya E S, Beloglazova N V, Abé S, Aubert T, Smet P F, Poelman D, Goryacheva I Y, Saeger S D, Hens Z . Langmuir, 2014, 30(25):7567. https://www.ncbi.nlm.nih.gov/pubmed/24892375

doi: 10.1021/la501268b     URL     pmid: 24892375
[31]
Chen Y, Li S, Huang L, Pan D . Inorg. Chem., 2013, 52(14):7819. https://www.ncbi.nlm.nih.gov/pubmed/23805901

doi: 10.1021/ic400083w     URL     pmid: 23805901
[32]
Kang X, Huang L, Yang Y, Pan D . J. Phys. Chem. C, 2015, 119(14):7933.
[33]
Kang X, Yang Y, Huang L, Tao Y, Wang L, Pan D . Green Chem., 2015, 17(8):4482.
[34]
Kang X, Yang Y, Wang L, Wei S, Pan D . ACS Appl. Mater. Interfaces, 2015, 7(50):27713. https://www.ncbi.nlm.nih.gov/pubmed/26629791

doi: 10.1021/acsami.5b10870     URL     pmid: 26629791
[35]
Wang L, Kang X, Pan D . Phys. Chem. Chem. Phys., 2016, 18(46):31634. https://www.ncbi.nlm.nih.gov/pubmed/27834974

doi: 10.1039/c6cp06022f     URL     pmid: 27834974
[36]
Wang L, Kang X, Pan D . Inorg. Chem., 2017, 56(11):6122. https://www.ncbi.nlm.nih.gov/pubmed/28474898

doi: 10.1021/acs.inorgchem.7b00053     URL     pmid: 28474898
[37]
Deng D, Cao J, Qu L, Achilefu S, Gu Y . Phys. Chem. Chem. Phys., 2013, 15(14):5078. https://www.ncbi.nlm.nih.gov/pubmed/23450151

doi: 10.1039/c3cp00046j     URL     pmid: 23450151
[38]
Wang J, Zhang R, Bao F, Han Z, Gu Y, Deng D . RSC Adv., 2015, 5(108):88583.
[39]
Raevskaya A, Lesnyak V, Haubold D, Dzhagan V, Stroyuk O, Gaponik N, Zahn D R T, Eychmüller A . J. Phys. Chem. C, 2017, 121(16):9032.
[40]
Xu Y, Chen T, Hu X, Jiang W, Wang L, Jiang W, Liu J . J. Colloid Interf. Sci., 2017, 496:479.
[41]
陈冰昆(Chen B K), 钟海政(Zhong H Z), 邹炳锁(Zou B S) . 化学进展(Progress in Chemistry), 2011, 23(11):2276.
[42]
Zhong H, Bai Z, Zou B . J. Phys. Chem. Lett., 2012, 3(21):3167. https://www.ncbi.nlm.nih.gov/pubmed/26296024

doi: 10.1021/jz301345x     URL     pmid: 26296024
[43]
Torimoto T, Kameyama T, Kuwabata S . J. Phys. Chem. Lett., 2014, 5(2):336. https://www.ncbi.nlm.nih.gov/pubmed/26270709

doi: 10.1021/jz402378x     URL     pmid: 26270709
[44]
Liu S, Su X . RSC Adv., 2014, 4(82):43415.
[45]
Li S, Tang X, Zang Z, Yao Y, Yao Z, Zhong H . Chinese J.Catal., 2018, 39(4):590. https://www.ncbi.nlm.nih.gov/pubmed/6875000

doi: 10.1002/1097-4679(198307)39:4【-逻*辑*与-】amp;amp;lt;590::aid-jclp2270390422【-逻*辑*与-】amp;amp;gt;3.0.co;2-b     URL     pmid: 6875000
[46]
Aldakov D, Lefrançois A, Reiss P . J. Mater. Chem. C, 2013, 1(24):3756.
[47]
Qi Y, Liu Q, Tang K, Liang Z, Ren Z, Liu X . J. Phys. Chem. C, 2009, 113(10):3939.
[48]
Norako M E, Brutchey R L . Chem. Mater., 2010, 22(5):1613.
[49]
Nose K, Soma Y, Omata T, Matsuo S O Y . Chem. Mater., 2009, 21(13):2607.
[50]
Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y . J. Am. Chem. Soc., 2008, 130(17):5620. https://www.ncbi.nlm.nih.gov/pubmed/18396869

doi: 10.1021/ja711027j     URL     pmid: 18396869
[51]
Xiang W D, Yang H L, Liang X J, Zhong J S, Wang J, Luo L, Xie C P . J. Mater. Chem. C, 2013, 1(10):2014.
[52]
Berends A C, Rabouw F T, Spoor F C M, Bladt E, Grozema F C, Houtepen A J, Siebbeles L D A, Donega C M . J. Phys. Chem. Lett., 2016, 7(17):3503. https://www.ncbi.nlm.nih.gov/pubmed/27552674

doi: 10.1021/acs.jpclett.6b01668     URL     pmid: 27552674
[53]
Chen B, Pradhan N, Zhong H . J. Phys. Chem. Lett., 2018, 9(2):435. https://www.ncbi.nlm.nih.gov/pubmed/29303589

doi: 10.1021/acs.jpclett.7b03037     URL     pmid: 29303589
[54]
Hamanaka Y, Ogawa T, Tsuzuki M . J. Phys. Chem. C, 2011, 115(5):1786.
[55]
Nam D E, Song W S, Yang H . J. Mater. Chem., 2011, 21(45):18220.
[56]
Zang H, Li H, Makarov N S, Velizhanin K A, Wu K, Park Y S, Klimov V I . Nano Lett., 2017, 17(3):1787. https://www.ncbi.nlm.nih.gov/pubmed/28169547

doi: 10.1021/acs.nanolett.6b05118     URL     pmid: 28169547
[57]
Leng Z, Huang L, Shao F, Lv Z, Li T, Gu X, Han H . Mater. Lett., 2014, 119(1):100.
[58]
Ji W Q, Zhang Q H, Wang C F, Chen S . Ind. Eng. Chem. Res., 2016, 55(45):11700.
[59]
Regulacio M D, Win K Y, Lo S L, Zhang S Y, Zhang X, Wang S, Han M Y, Zheng Y . Nanoscale, 2013, 5(6):2322. https://www.ncbi.nlm.nih.gov/pubmed/23392168

doi: 10.1039/c3nr34159c     URL     pmid: 23392168
[60]
Lany S, Zunger A . Phys. Rev B: Condens. Matter Mater. Phys., 2005, 72(3):035215.
[61]
Zhang B, Wang Y, Yang C, Hu S, Gao Y, Zhang Y, Wang Y, Demir H V, Liu L, Yong K T . Phys. Chem. Chem. Phys., 2015, 17(38):25133. https://www.ncbi.nlm.nih.gov/pubmed/26349413

doi: 10.1039/c5cp03312h     URL     pmid: 26349413
[62]
Li L, Pandey A, Werder D J, Khanal B P, Pietryga J M, Klimov V I . J. Am. Chem. Soc., 2011, 133(5):1176. https://www.ncbi.nlm.nih.gov/pubmed/21207995

doi: 10.1021/ja108261h     URL     pmid: 21207995
[63]
Wang X, Liang Z, Xu X, Wang N, Fang J, Wang J, Xu G . J. Alloy Compd., 2015, 640:134. https://linkinghub.elsevier.com/retrieve/pii/S0925838815009974

doi: 10.1016/j.jallcom.2015.03.249     URL    
[64]
Hamanaka Y, Kuzuya T, Sofue T, Kino T, Ito K, Sumiyama K . Chem. Phys. Lett., 2008, 466(4):176.
[65]
Chen Y, Li S, Huang L, Pan D . Nanoscale, 2014, 6(3):1295. https://www.ncbi.nlm.nih.gov/pubmed/24337019

doi: 10.1039/c3nr05014a     URL     pmid: 24337019
[66]
Xiong W W, Yang G H, Wu X C, Zhu J J . J. Mater. Chem. B, 2013, 1(33):4160. https://www.ncbi.nlm.nih.gov/pubmed/32260969

doi: 10.1039/c3tb20638f     URL     pmid: 32260969
[67]
Hamanaka Y, Ozawa K, Kuzuya T . J. Phys. Chem. C, 2014, 118(26):14562.
[68]
Kim Y K, Cho Y S, Chung K, Choi C J . Proc. SPIE, 2011, 8094:80940I-3.
[69]
Spangler L C, Chu R, Lu L, Kiely C J, Berger B W, Mclntosh S . Nanoscale, 2017, 9(27):9340. https://www.ncbi.nlm.nih.gov/pubmed/28661538

doi: 10.1039/c7nr02852k     URL     pmid: 28661538
[70]
Yuan X, Zhao J, Jing P, Zhang W, Li H, Zhang L, Zhong X, Masumoto Y . J. Phys. Chem. C, 2012, 116(22):11973.
[71]
Gabka G, Bujak P, Giedyk K, Ostrowski A, Malinowska K, Herbich J, Golec B, Wielgus I, Pron A . Inorg. Chem., 2014, 53(10):5002. https://www.ncbi.nlm.nih.gov/pubmed/24786548

doi: 10.1021/ic500046m     URL     pmid: 24786548
[72]
Yoon H C, Oh J H, Ko M, Yoo H, Do Y R . ACS Appl. Mater. Interfaces, 2015, 7(13):7342. https://www.ncbi.nlm.nih.gov/pubmed/25781889

doi: 10.1021/acsami.5b00664     URL     pmid: 25781889
[73]
Song W S, Kim J H, Lee J H, Lee H S, Do Y R, Yang H . J. Mater. Chem., 2012, 22(41):21901.
[74]
Pearson R G . J. Am. Chem. Soc., 1963, 85(22):3533.
[75]
Hong M, Xuan T, Liu J, Jiang Z, Chen Y, Chen X, Li H . RSC Adv., 2015, 5(124):102682.
[76]
Dai M, Ogawa S, Kameyama T, Okazaki K, Kudo A, Kuwabata S, Tsuboi Y, Torimoto T . J. Mater. Chem., 2012, 22(25):12851.
[77]
Luo Z, Zhang H, Huang J, Zhong X . J. Colloid Interf. Sci., 2012, 377(1):27. https://linkinghub.elsevier.com/retrieve/pii/S0021979712003724

doi: 10.1016/j.jcis.2012.03.074     URL    
[78]
Jiang T, Song J, Wang H, Ye X, Wang H, Zhang W, Yang M, Xia R, Zhu L, Xu X . J. Mater. Chem. B, 2015, 3(11):2402. https://www.ncbi.nlm.nih.gov/pubmed/32262071

doi: 10.1039/c4tb01957a     URL     pmid: 32262071
[79]
Hu X, Chen T, Xu Y, Wang M, Jiang W, Jiang W . J. Lumin., 2018, 200:189.
[80]
陈婷(Chen T), 徐彦乔(Xu Y Q), 王连军(Wang L J), 江莞(Jiang W), 江伟辉(Jiang W H), 刘健敏(Liu J M), 谢志翔(Xie Z X) . CN 201610920307.2, 2016.
[81]
Chen T, Xu Y, Wang L, Jiang W, Jiang W, Xie Z . Chem. Eur. J., 2018, 24(61):16407. https://www.ncbi.nlm.nih.gov/pubmed/30136426

doi: 10.1002/chem.201803548     URL     pmid: 30136426
[82]
Demir H V, Nizamoglu S, Erdem T, Mutlugun E, Gaponik N, Eychmüllerc A . Nano Today, 2011, 6(6):632.
[83]
Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y . Mater. Sci. Eng. R, 2010, 71(1):1.
[84]
Chen B, Zhou Q, Li J, Zhang F, Liu R, Zhong H, Zou B . Opt. Express, 2013, 21(8):10105. https://www.ncbi.nlm.nih.gov/pubmed/23609715

doi: 10.1364/OE.21.010105     URL     pmid: 23609715
[85]
Chen B, Zhong H, Wang M, Liu R, Zou B . Nanoscale, 2013, 5(8):3514. https://www.ncbi.nlm.nih.gov/pubmed/23503592

doi: 10.1039/c3nr33613a     URL     pmid: 23503592
[86]
Zhou Q, Chen B, Bai Z, Zou B, Zhong H . Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp., 2014, 45(1):1285.
[87]
Chen B, Susha A S, Reckmeier C J, Kershaw S V, Wang Y, Zou B, Zhong H, Rogach A L . Adv. Mater., 2017, 29(1):1604284.
[88]
Yuan X, Ma R, Zhang W, Hua J, Meng X, Zhong X, Zhang J, Zhao J, Li H . ACS Appl. Mater. Interfaces, 2015, 7(16):8659. https://www.ncbi.nlm.nih.gov/pubmed/25866991

doi: 10.1021/acsami.5b00925     URL     pmid: 25866991
[89]
Chuang P H, Lin C C, Liu R S . ACS Appl. Mater. Interfaces, 2014, 6(17):15379. https://www.ncbi.nlm.nih.gov/pubmed/25111960

doi: 10.1021/am503889z     URL     pmid: 25111960
[90]
Colvin V L, Schlamp M C, Alivisatos A P . Nature, 1994, 370(6488):354.
[91]
Zhang H, Chen S, Sun X W . ACS Nano, 2018, 12(1):697. https://www.ncbi.nlm.nih.gov/pubmed/29253334

doi: 10.1021/acsnano.7b07867     URL     pmid: 29253334
[92]
Zhang Y, Xie C, Su H, Liu J, Pickering S, Wang Y, Yu W W, Wang J, Wang Y, Hahm J I, Dellas N, Mohney S E, Xu J . Nano Lett., 2011, 11(2):329. https://www.ncbi.nlm.nih.gov/pubmed/21188964

doi: 10.1021/nl1021442     URL     pmid: 21188964
[93]
Tan Z, Zhang Y, Xie C, Su H, Liu J, Zhang C, Dellas N, Mohney S E, Wang Y, Wang J, Xu J . Adv. Mater., 2011, 23(31):3553. https://www.ncbi.nlm.nih.gov/pubmed/21732559

doi: 10.1002/adma.201100719     URL     pmid: 21732559
[94]
Kim J H, Yang H . Opt. Lett., 2014, 39(17):5002. https://www.ncbi.nlm.nih.gov/pubmed/25166059

doi: 10.1364/OL.39.005002     URL     pmid: 25166059
[95]
Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H . Chem. Mater., 2016, 28(4):1085. https://www.ncbi.nlm.nih.gov/pubmed/31428822

doi: 10.1007/s00167-019-05671-4     URL     pmid: 31428822
[96]
Ji C, Lu M, Wu H, Zhang X, Shen X, Wang X, Zhang Y, Wang Y, Yu W W . ACS Appl. Mater. Inferfaces, 2017, 9(9):8187. https://www.ncbi.nlm.nih.gov/pubmed/28191918

doi: 10.1021/acsami.6b16238     URL     pmid: 28191918
[97]
Lee K H, Lee J H, Kang H D, Park B, Kwon B, Ko H, Lee C, Lee J, Yang H . ACS Nano, 2014, 8(5):4893. https://www.ncbi.nlm.nih.gov/pubmed/24758609

doi: 10.1021/nn500852g     URL     pmid: 24758609
[98]
Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M, Klimov V I, Pietryga J M, Klimov V I . Nat. Commun., 2013, 4(10):2661.
[99]
Kim J H, Lee K H, Jo D Y, Lee Y, Hwang J Y, Yang H . Appl. Phys. Lett., 2014, 105(13):133104. http://aip.scitation.org/doi/10.1063/1.4896911

doi: 10.1063/1.4896911     URL    
[100]
Li J, Jin H, Wang K, Xie D, Xu D, Xu X, Xu G . RSC Adv., 2016, 6(76):72462. https://www.ncbi.nlm.nih.gov/pubmed/27920902

doi: 10.1039/C6RA07859A     URL     pmid: 27920902
[101]
Kim J H, Jo D Y, Lee K H, Jang E P, Han C Y, Jo J H, Yang H . Adv. Mater., 2016, 28(25):5093. https://www.ncbi.nlm.nih.gov/pubmed/27135303

doi: 10.1002/adma.201600815     URL     pmid: 27135303
[102]
Zhu B, Ji W, Duan Z, Sheng Y, Wang T, Yuan Q, Zhang H, Tang X, Zhang H . J. Mater. Chem. C, 2018, 6(17):4683. http://xlink.rsc.org/?DOI=C8TC01022F

doi: 10.1039/C8TC01022F     URL    
[103]
Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H . Adv. Mater., 2018, 30(30):1800764. https://www.ncbi.nlm.nih.gov/pubmed/29888521

doi: 10.1002/adma.201800764     URL     pmid: 29888521
[104]
Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F . Nat. Photonics, 2019, 13:418.
[105]
Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Chen L, Zeng Z, Li X, Jia Y, Wang S, Du Z, Li L S, Zhang Z . Nat. Photonics, 2019, 13:192. https://doi.org/10.1038/s41566-019-0364-z

doi: 10.1038/s41566-019-0364-z     URL    
[1] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[2] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[3] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[4] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[5] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[6] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[7] 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 碳量子点激发依赖荧光特性的机理、调控及应用[J]. 化学进展, 2018, 30(8): 1186-1201.
[8] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[9] 翟彩华, 陈志良, 吕沙沙, 林毅*, 张志淩, 庞代文. 金属增强量子点荧光[J]. 化学进展, 2017, 29(8): 814-823.
[10] 刘康, 高冠斌*, 孙涛垒*. β-HgS量子点的制备、性质及应用[J]. 化学进展, 2017, 29(7): 776-784.
[11] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[12] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[13] 胡先运, 郭庆生, 刘玉乾, 孙清江, 孟铁宏, 张汝国. 量子点荧光传感器的设计及应用[J]. 化学进展, 2017, 29(2/3): 300-317.
[14] 刘超, 谭瑞琴, 曾俞衡, 王维燕, 黄金华, 宋伟杰. 硅纳米晶的制备及其在太阳电池中的应用研究[J]. 化学进展, 2015, 27(9): 1302-1312.
[15] 黄启同, 林小凤, 李飞明, 翁文, 林丽萍, 胡世荣. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614.