English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1136-1147 DOI: 10.7536/PC181218 前一篇   后一篇

• •

基于离子液体的炭材料制备、改性及应用

佟国宾, 鄂雷, 徐州, 马春慧, 李伟**(), 刘守新**()   

  1. 东北林业大学 生物质材料科学与技术教育部重点实验室 哈尔滨 150040
  • 收稿日期:2019-12-24 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 李伟, 刘守新
  • 基金资助:
    国家重点研发计划(2017YFD0601006); 国家自然科学基金项目(31890773); 国家自然科学基金项目(31570567); 中央高校基本科研业务费(2572017ET02)

Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids

Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li**(), Shouxin Liu**()   

  1. Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
  • Received:2019-12-24 Online:2019-08-15 Published:2019-05-30
  • Contact: Wei Li, Shouxin Liu
  • About author:
    ** E-mail: (Wei Li)
    (Shouxin Liu)
  • Supported by:
    National Key R&D Program of China(2017YFD0601006); National Natural Science Foundation of China(31890773); National Natural Science Foundation of China(31570567); Central University Basic Research Expenses(2572017ET02)

离子液体因其熔点低、液态温域宽、蒸气压低、热稳定性高、电导率高、电化学窗口宽、结构可设计及对许多化合物的亲和性等系列性能而引起人们广泛关注。离子液体在炭材料制备、改性领域展示出了良好的前景及巨大的应用潜力,可直接作为碳源,经过高温炭化实现杂原子掺杂制备多孔炭材料;离子液体也可充当反应介质和致孔剂,将生物质转化为多孔炭材料;此外,由于离子液体与炭材料相容性较好,可以用于多孔炭材料改性制备炭复合材料。基于离子液体的炭材料在电催化、超级电容器、吸附分离及生物医学等领域具有潜在的应用价值。本文总结了基于离子液体炭材料的制备、改性及应用最新研究进展,并着重介绍了其在能源和环境相关领域的应用。

Nowadays, ionic liquids have attracted much attention due to their low melting point, wide liquid range, low vapor pressure, high thermal stability, high electrical conductivity, wide electrochemical window, designable structure, and affinity for many compounds. Ionic liquids have great potential in the field of carbon material preparation and modification. Ionic liquids can be directly used as a carbon source to prepare heteroatom-doped porous carbon materials by high-temperature carbonization; further, they can be used as a reaction medium and a porogen to convert biomass into porous carbon materials. In addition, ionic liquids can also be used for the modification of the porous carbon materials to prepare the carbon composite materials due to their good compatibility with the carbon materials. The ionic liquid-based carbon materials have considerable application value in the fields of electrocatalysis, supercapacitors, adsorption separation, biomedicine, and so on. Thus, in this paper, the latest research progress in the preparation and modification of ionic liquid-based carbon materials are summarized, with a focus on their applications in energy and environmental related fields.

()
图1 不同离子液体的热重分析测试曲线:(A) a-BMIM-Tf2N; b-EMIM-tcm; c-BMIM-tcm; d-DMIM-tcm[71];(B) a-BMIM-Tf2N; b-BCNIM-Tf2N; c-BCNIM-beti; d-BCNIM-Cl[53]
Fig. 1 TGA curves measured on different ionic liquids:(A) a-BMIM-Tf2N; b-BMIM-tcm; c-EMIM-tcm; d-DMIM-tcm[71];(B) a-BMIM-Tf2N; b-BCNIM-Tf2N; c-BCNIM-beti; d-BCNIM-Cl[53]
图2 作为炭前驱体的不同离子液体结构及其简称
Fig. 2 Structures and abbreviation of different ionic liquids used as carbon precursors
图3 糖炭化机理示意图[83]
Fig. 3 Schematic carbonization mechanism of sugars[83]
图4 离子热合成示意图[61]
Fig. 4 Schematic of ionothermal synthesis[61]
图5 (a)溶剂炭的SEM图像; (b)溶剂炭的TEM图像(AN、BN、EG分别代表乙腈、苯甲腈、乙二醇)[89]
Fig. 5 (a) SEM images of solvent carbons. (b) TEM images of solvent carbons.(AN, BN, EG represent acetonitrile, benzonitrile, ethylene glycol, respectively)[89]
图6 KCl-ZnCl2低共熔离子液体中KCl的量对所得样品的比表面积、总孔容和中孔孔容的影响[87]
Fig. 6 Influence of the amount of KCl used in the KCl-ZnCl2 eutectic molten ionic liquids on the specific surface area, total and mesopore volume of the obtained samples[87]
图7 以MgCl2·6H2O为反应介质得到的腺嘌呤衍生NDCs合成过程示意图[90]
Fig. 7 Schematic illustration for the synthesis of adenine derived NDCs obtained with MgCl2·6H2O as reaction medium[90]
图8 离子液体-碳纳米管复合材料的制备过程示意图[100, 102]
Fig. 8 Schematic diagram for preparation of ionic liquid-carbon nanotube composites[100, 102]
图9 离子液体功能化氧化石墨烯及PVDF/GO-IL(PGL)复合材料的制备示意图[104];a,c 为GO的 TEM 和 AFM 图像;b,d为GO-IL的TEM 和 AFM 图像
Fig. 9 Schematic presentation for the functionalization of GO by IL and the fabrication of PVDF/GO-IL(PGL) composites[104]. TEM & AFM images of GO(a,c) and GO-IL(b,d)
图10 HTC/ITC-JG-900炭的N2吸附数据(a);在6 M KOH中的循环伏安曲线图(b);在1 A/g条件下的充放电曲线(c);比电容随电流密度变化曲线(d)[62]
Fig. 10 (a) N2 sorption data for HTC/ITC-JG-900 carbons;(b) CV graphs for HTC/ITC-JG-900 carbons at 50 mV/s in 6 M KOH;(c) Charge-discharge curves at 1 A/g;(d) Specific capacitance versus current density for HTC/ITC-JG-900 carbons[62]
[1]
Shao L D, Zhang B S, Zhang W, Hong S Y,, Schlogl R, Su D S . Angew. Chem. Int. Ed., 2013,52(7):2114. https://www.ncbi.nlm.nih.gov/pubmed/23307489

doi: 10.1002/anie.201207362     URL     pmid: 23307489
[2]
杨世迎(Yang S M), 张翱(Zhang A), 任腾飞(Ren T F), 张宜涛(Zhang Y T) . 化学进展( Progress in Chemistry), 2017,29(5):539.
[3]
Danghyan V, Novoa S C, Mukasyan A, Wolf E E . Appl. Catal. B: Environ., 2018,234:178.
[4]
Huang X Q, Zhao Z P, Cao L, Chen Y, Zhu E B, Lin Z Y, Li M F, Yan A M, Zettl A, Wang Y M, Duan X F, Mueller T, Huang Y . Science, 2015,348(6240):1230. https://www.ncbi.nlm.nih.gov/pubmed/26068847

doi: 10.1126/science.aaa8765     URL     pmid: 26068847
[5]
Shen Z T, Zhang Y Y, Jin F, McMillan O, Al-Tabbaa A . Sci. Total Environ., 2017,609:1401. https://www.ncbi.nlm.nih.gov/pubmed/28797146

doi: 10.1016/j.scitotenv.2017.08.008     URL     pmid: 28797146
[6]
Ko Y J, Choi K, Lee S, Cho J M, Choi H J, Hong S W, Choi J W, Mizuseki H, Lee W S . J. Hazard. Mater., 2016,320:368. https://www.ncbi.nlm.nih.gov/pubmed/27573870

doi: 10.1016/j.jhazmat.2016.08.041     URL     pmid: 27573870
[7]
吴艳姣(Wu Y J), 李伟(Li W), 吴琼(Wu Q), 刘守新(Liu S X) . 化学进展( Progress in Chemistry), 2016,28(1):121.
[8]
Li G L, Yuan L F, Cheng G C, Chen S M, Liu C D, Chen W W, Yang B B, Xu X C, Hao C . Appl. Surf. Sci., 2018,450:251.
[9]
Ahn S, Jeong M, Yokoshima T, Nara H, Momma T, Osaka T . J. Power Sources, 2016,336:203.
[10]
Leyva-Garcia S, Lozano-Castello D, Morallon E, Vogl T, Schutter C, Passerini S, Balducci A, Cazorla-Amoros D . J. Power Sources, 2016,336:419.
[11]
Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang D H, . HAngew. Chem. Int. Ed., 2015,54(14):4325. https://www.ncbi.nlm.nih.gov/pubmed/25663183

doi: 10.1002/anie.201411109     URL     pmid: 25663183
[12]
Pang Q, Tang J T, Huang H, Liang X, Hart C, Tam K C, Nazar L F . Adv. Mater., 2015,27(39):6021. https://www.ncbi.nlm.nih.gov/pubmed/26314378

doi: 10.1002/adma.201502467     URL     pmid: 26314378
[13]
Paraknowitsch J P, Thomas A . Macromol. Chem. Phys., 2012,213(10/11):1132.
[14]
Li X P, Zhang Y Z, Meng Y, Tan G Q, Ou J K, Wang Y J, Zhao Q, Yuan H Y, Xiao D . ChemElectroChem, 2017,4(8):1856.
[15]
Xu G Y, Han J P, Ding B, Nie P, Pan J, Dou H, Li H S, Zhang X G . Green Chemistry, 2015,17(3):1668.
[16]
Qu G, Jia S F, Wang H, Cao F, Li L, Qing C, Sun D M, Wang B X, Tang Y W, Wang J B . ACS Appl. Mat. Interfaces, 2016,8(32):20822. https://www.ncbi.nlm.nih.gov/pubmed/27433808

doi: 10.1021/acsami.6b06630     URL     pmid: 27433808
[17]
李志伟(Li Z W), 仲佳亮(Zhong J L), 陈楠楠(Chen N N), 薛兵(Xue B), 米红宇(Mi H Y) . 化学学报( Acta Chimica Sinica), 2018,76(03):209.
[18]
An M C, Du C Y, Du L, Sun Y R, Wang Y J, Chen C, Han G K, Yin G P, Gao Y Z . Chem. Phys. Lett., 2017,687:1.
[19]
Yang D S, Bhattacharjya D, Inamdar S, Park J, Yu J S . J. Am. Chem. Soc., 2012,134(39):16127. https://www.ncbi.nlm.nih.gov/pubmed/22966761

doi: 10.1021/ja306376s     URL     pmid: 22966761
[20]
Lin T, Huang F, Liang J, Wang Y. Energy Environ . Sci., 2011,4(3):862.
[21]
Jang A R, Lee Y W, Lee S S, Hong J, Beak S H, Pak S, Lee J, Shin H S, Ahn D, Hong W K, Cha S, Sohn J I, Park I K . J. Mater. Chem. A, 2018,6(17):7351.
[22]
Kopac T, Kirca Y, Toprak A . Int. J. Hydrogen Energy, 2017,42(37):23606.
[23]
Paraknowitsch J P, Thomas A, Schmidt J . Chem. Commun., 2011,47(29):8283. https://www.ncbi.nlm.nih.gov/pubmed/21674080

doi: 10.1039/c1cc12272j     URL     pmid: 21674080
[24]
Lee J S M, Parker D J, Cooper A I, Hasell T . J. Mater. Chem. A, 2017,5(35):18603.
[25]
Chabu J M, Wang L Q, Tang F Y, Zeng K, Sheng J P, Walle M D, Deng L, Liu Y N . ChemElectroChem, 2017,4(8):1885.
[26]
Tian G L, Zhao M Q, Yu D S, Kong X Y, Huang J Q, Zhang Q, Wei F . Small, 2014,10(11):2251. https://www.ncbi.nlm.nih.gov/pubmed/24574006

doi: 10.1002/smll.201303715     URL     pmid: 24574006
[27]
Jang J W, Lee C E, Lyu S C, Lee T J, Lee C J . Appl. Phys. Lett., 2004,84(15):2877.
[28]
Feng L Y, Yan Y Y, Chen Y G, Wang L J . Energy Environ. Sci., 2011,4(5):1892.
[29]
Gupta K, Liu T, Kavian R, Chae H G, Ryu G H, Lee Z, Lee S W, Kumar S . J. Mater. Chem. A, 2016,4(47):18294.
[30]
Liu Y, Zhao X H, Chauhan G S, Ahn J H . Appl. Surf. Sci., 2016,380:151.
[31]
Yu Z L, Li G C, Fechler N, Yang N, Ma Z Y, Wang X, Antonietti M, Yu S H . Angew. Chem. Int. Ed., 2016,55(47):14623. https://www.ncbi.nlm.nih.gov/pubmed/27607518

doi: 10.1002/anie.201605510     URL     pmid: 27607518
[32]
王恩民(Wang E M), 李文翠(Li W C), 雷成(Lei C), 陆安慧(Lu A H) . 化工学报( Journal of Chemical Industry and Engineering(China)), 2015,66(07):2565.
[33]
Song X Y, Ma X L, Yu Z Q, Ning G Q, Li Y, Sun Y Z . ChemElectroChem, 2018,5(11):1474.
[34]
Pan L, Wang Y X, Hu H, Li X X, Liu J L, Guan L, Tian W, Wang X B, Li Y P, Wu M B . Carbon, 2018,134:345.
[35]
Chen P, Wang L K, Wang G, Gao M R, Ge J, Yuan W J, Shen Y H, Xie A J, Yu S H . Energy Environ. Sci., 2014,7(12):4095. http://xlink.rsc.org/?DOI=C4EE02531H

doi: 10.1039/C4EE02531H     URL    
[36]
Yang J Q, Zhou X L, Wu D H, Zhao X D, Zhou Z . Adv. Mater., 2017,29(6):1604108 http://doi.wiley.com/10.1002/adma.201604108

doi: 10.1002/adma.201604108     URL    
[37]
Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K . Carbon, 2014,73:361. 6719a3a7-a85a-4cce-9618-9cc795bdea0ahttp://dx.doi.org/10.1016/j.carbon.2014.02.076

doi: 10.1016/j.carbon.2014.02.076     URL    
[38]
来庆学(Lai Q X), 张校刚(Zhang X G), 梁彦瑜(Liang Y Y) . 化学进展( Progress in Chemistry), 2013,10:1703. 9ac730d6-cab4-4457-8f49-7965f1a1c4b5http://www.progchem.ac.cn//CN/abstract/abstract11172.shtml

doi: 10.7536/PC130117     URL    
[39]
Welton T . Chem. Rev., 1999,99(8):2071. https://www.ncbi.nlm.nih.gov/pubmed/11849019

doi: 10.1021/cr980032t     URL     pmid: 11849019
[40]
Hallett J P, Welton T . Chem. Rev., 2011,111(5):3508. https://www.ncbi.nlm.nih.gov/pubmed/21469639

doi: 10.1021/cr1003248     URL     pmid: 21469639
[41]
Fellinger T P, Thomas A, Yuan J, Antonietti M . Adv. Mater., 2013,25(41):5838. https://www.ncbi.nlm.nih.gov/pubmed/24425624

doi: 10.1002/adma.201301975     URL     pmid: 24425624
[42]
王引航(Wang Y H), 李伟(Li W), 罗沙(Luo S), 刘守新(Liu S X), 马春慧(Ma C H), 李坚(Li J) . 化学学报( Acta Chimica Sinica), 2018,76(2):85.
[43]
Wasserscheid P, Keim W . Angew. Chem. Int. Ed., 2000,39(21):3772. https://www.ncbi.nlm.nih.gov/pubmed/11091453

doi: 10.1002/1521-3773(20001103)39:21【-逻*辑*与-】lt;3772::aid-anie3772【-逻*辑*与-】gt;3.0.co;2-5     URL     pmid: 11091453
[44]
钱文静(Qian W J), 袁超(Yuan C), 郭江娜(Guo J N), 严锋(Yan F) . 化学学报( Acta Chimica Sinica), 2015,73(4):310.
[45]
Zhang S, Dokko K, Watanabe M . Materials Horizons, 2015,2(2):168.
[46]
Vekariya R L . J. Mol. Liq., 2017,227:44.
[47]
Goossens K, Lava K, Bielawski C W, Binnemans K . Chem. Rev., 2016,116(8):4643. https://www.ncbi.nlm.nih.gov/pubmed/27088310

doi: 10.1021/cr400334b     URL     pmid: 27088310
[48]
Brennecke J F, Gurkan B E . J. Phys. Chem. Lett., 2010,1(24):3459.
[49]
Yoshida Y, Saito G . Phys.Chem.Chem.Phys., 2010,12(8):1675. https://www.ncbi.nlm.nih.gov/pubmed/20145832

doi: 10.1039/b920046k     URL     pmid: 20145832
[50]
Freudenmann D, Wolf S, Wolff M, Feldmann C . Angew. Chem. Int. Ed., 2011,50(47):11050. https://www.ncbi.nlm.nih.gov/pubmed/21990270

doi: 10.1002/anie.201100904     URL     pmid: 21990270
[51]
Duan X, Ma J, Lian J, Zheng W . CrystEngComm, 2014,16(13):2550.
[52]
Xie Z L, Su D S . Eur. J. Inorg. Chem., 2015,2015(7):1137.
[53]
Lee J S, Wang X, Luo H, Baker G A, Dai S . J. Am.Chem.Soc., 2009,131(13):4596. https://www.ncbi.nlm.nih.gov/pubmed/19296590

doi: 10.1021/ja900686d     URL     pmid: 19296590
[54]
Cui X, Yang Q, Xiong Y, Bao Z, Xing H, Dai S . Chem. Commun., 2017,53(36):4915. https://www.ncbi.nlm.nih.gov/pubmed/28401202

doi: 10.1039/c7cc01000a     URL     pmid: 28401202
[55]
Zhang S G, Miran M S, Ikoma A, Dokko K, Watanabe M . J. Am. Chem. Soc., 2014,136(5):1690. https://www.ncbi.nlm.nih.gov/pubmed/24450770

doi: 10.1021/ja411981c     URL     pmid: 24450770
[56]
Men Y J, Siebenburger M, Qiu X L, Antonietti M, Yuan J Y . J. Mater. Chem. A, 2013,1(38):11887.
[57]
Xiqing W, Sheng D . Angew. Chem. Int. Ed., 2010,49(37):6664. https://www.ncbi.nlm.nih.gov/pubmed/20677305

doi: 10.1002/anie.201003163     URL     pmid: 20677305
[58]
Hossain M M, Aldous L . Aust. J. Chem., 2012,65(11):1465.
[59]
Wang H, Gurau G, Rogers R D . Chem. Soc. Rev., 2012,41(4):1519. https://www.ncbi.nlm.nih.gov/pubmed/22266483

doi: 10.1039/c2cs15311d     URL     pmid: 22266483
[60]
Fu D B, Mazza G, Tamaki Y . J. Agric. Food Chem., 2010,58(5):2915. https://www.ncbi.nlm.nih.gov/pubmed/20146421

doi: 10.1021/jf903616y     URL     pmid: 20146421
[61]
Zhang P F, Gong Y T, Wei Z Z, Wang J, Zhang Z Y, Li H R, Dai S, Wang Y. ACS Appl . Mat. Interfaces, 2014,6(15):12515. https://www.ncbi.nlm.nih.gov/pubmed/25001196

doi: 10.1021/am5023682     URL     pmid: 25001196
[62]
Liu Y, Huang B, Lin X, Xie Z . J. Mater. Chem. A, 2017,5(25):13009.
[63]
Lin X X, Tan B, Peng L, Wu Z F, Xie Z L . J. Mater. Chem. A, 2016,4(12):4497.
[64]
Yuxiao D, Sheng S D . ChemSusChem, 2014,7(6):1542. https://www.ncbi.nlm.nih.gov/pubmed/24623567

doi: 10.1002/cssc.201301226     URL     pmid: 24623567
[65]
Polo-Luque M L, Simonet B M, Valcarcel M . Trends Anal. Chem., 2013,47:99.
[66]
Peng R G, Wang Y Z, Tang W, Yang Y K, Xie X L . Polymers, 2013,5(2):847.
[67]
Morris R E . Chem. Commun., 2009,21:2990.
[68]
刘磊(Liu L), 杜娟(Du J), 张艺馨(Zhang Y X), 刘梦(Liu M), 于奕峰(Yu Y F), 陈爱兵(Chen A B) . 新型炭材料( New Carbon Materials), 2017,32(4):380.
[69]
Paraknowitsch J P, Thomas A, Antonietti M . J. Mater. Chem., 2010,20(32):6746.
[70]
Zhang S, Dokko K, Watanabe M . Chem. Mater., 2014,26(9):2915.
[71]
Seung L J, Xiqing W, Huimin L, Sheng D . Adv. Mater., 2010,22(9):1004. https://www.ncbi.nlm.nih.gov/pubmed/20217829

doi: 10.1002/adma.200903403     URL     pmid: 20217829
[72]
Wooster T J, Johanson K M, Fraser K J, Macfarlane D R, Scott J L . Green Chemistry, 2006,8(8):691.
[73]
Ranjbar Sahraie N, Paraknowitsch J P, Göbel C, Thomas A, Strasser P . J. Am. Chem. Soc., 2014,136(41):14486. https://www.ncbi.nlm.nih.gov/pubmed/25221897

doi: 10.1021/ja506553r     URL     pmid: 25221897
[74]
Fulvio P F, Hillesheim P C, Oyola Y, Mahurin S M, Veith G M, Dai S . Chem. Commun., 2013,49(66):7289. https://www.ncbi.nlm.nih.gov/pubmed/23846510

doi: 10.1039/c3cc44175j     URL     pmid: 23846510
[75]
Ravula S, Larm N E, Liu Y, Atwood J L, Baker S N, Baker G A . New J. Chem., 2018,42(3):1979.
[76]
Gong J, Lin H J, Antonietti M, Yuan J Y . J. Mater. Chem. A, 2016,4(19):7313.
[77]
Men Y, Ambrogi M, Han B, Yuan J . Int. J. Mol. Sci., 2016,17(4):532. https://www.ncbi.nlm.nih.gov/pubmed/27070588

doi: 10.3390/ijms17040532     URL     pmid: 27070588
[78]
Gao J, He C, Liu J, Ren P, Lu H, Feng J, Zou Z, Yin Z, Wen X, Tan X . Catal. Sci. Technol., 2018,8(4):1142.
[79]
Jin Z Y, Lu A H, Xu Y Y, Zhang J T, Li W C . Adv. Mater., 2014,26(22):3700. https://www.ncbi.nlm.nih.gov/pubmed/24648058

doi: 10.1002/adma.201306273     URL     pmid: 24648058
[80]
Vaid T P, Kelley S P, Rogers R D . IUCrJ, 2017,4:380. https://www.ncbi.nlm.nih.gov/pubmed/28875025

doi: 10.1107/S2052252517008326     URL     pmid: 28875025
[81]
Ma Z, Yu J, Dai S . Adv. Mater., 2010,22(2):261. https://www.ncbi.nlm.nih.gov/pubmed/20217687

doi: 10.1002/adma.200900603     URL     pmid: 20217687
[82]
Wang Y S, Xu Y P, Tian Z J, Lin L W . Chin. J. Catal., 2012,33(1):39.
[83]
Lee J S, Mayes R T, Luo H, Dai S . Carbon, 2010,48(12):3364. https://www.ncbi.nlm.nih.gov/pubmed/26152463

doi: 10.1016/j.jbiomech.2015.06.014     URL     pmid: 26152463
[84]
Xie Z L, Huang X, Titirici M M, Taubert A . RSC Advances, 2014,4(70):37423.
[85]
Guo F, Fang Z . BioResources, 2014,9(2):3369.
[86]
Zhu C H, Fang Z, Su T C, Li X K, Liu Q Y . Cellulose, 2018,25(4):2473.
[87]
Pampel J, Denton C, Fellinger T P . Carbon, 2016,107:288.
[88]
Fechler N, Fellinger T P, Antonietti M . Adv. Mater., 2013,25(1):75. https://www.ncbi.nlm.nih.gov/pubmed/23027658

doi: 10.1002/adma.201203422     URL     pmid: 23027658
[89]
Chang Y, Antonietti M, Fellinger T P . Angew. Chem. Int. Ed., 2015,54(18):5507. https://www.ncbi.nlm.nih.gov/pubmed/25740456

doi: 10.1002/anie.201411685     URL     pmid: 25740456
[90]
Pampel J, Mehmood A, Antonietti M, Fellinger T P . Materials Horizons, 2017,4(3):493.
[91]
Liu X, Antonietti M . Carbon, 2014,69(Supplement C):460.
[92]
Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T . Science, 2003,300(5628):2072. https://www.ncbi.nlm.nih.gov/pubmed/12829776

doi: 10.1126/science.1082289     URL     pmid: 12829776
[93]
Janine C P, Jean-Marc N, Jean-François B, Joëlle R B, Corinne L . ChemElectroChem, 2016,3(4):572.
[94]
Fan X Q, Wang L P . Tribol. Int., 2015,88:179.
[95]
相欣然(Xiang X R), 万晓梅(Wan X M), 索红波(Suo H B), 胡燚(Hu Y) . 物理化学学报( Acta Physico-Chimica Sinica), 2018,34(1):99.
[96]
Tunckol M, Durand J, Serp P . Carbon, 2012,50(12):4303.
[97]
Polo-Luque M L, Simonet B M, Valcárcel M . Talanta, 2013,104:169. https://www.ncbi.nlm.nih.gov/pubmed/23597905

doi: 10.1016/j.talanta.2012.10.025     URL     pmid: 23597905
[98]
Polo-Luque M L, Simonet B M, Valcarcel M . Anal. Bioanal. Chem., 2012,404(3):903. https://www.ncbi.nlm.nih.gov/pubmed/22706403

doi: 10.1007/s00216-012-6156-7     URL     pmid: 22706403
[99]
Chinnappan A, Bandal H, Kim H, Ramakrishna S . Chem. Eng. J., 2017,316:928.
[100]
Yu B, Liu Z L, Ma C B, Sun J J, Liu W M, Zhou F . Tribol. Int., 2015,81:38.
[101]
Pei X, Yan Y H, Yan L, Yang P, Wang J, Xu R, Chan-Park M B . Carbon, 2010,48(9):2501.
[102]
Lee J, Aida T . Chem. Commun., 2011,47(24):6757. https://www.ncbi.nlm.nih.gov/pubmed/21512697

doi: 10.1039/c1cc00043h     URL     pmid: 21512697
[103]
Ghatee M H, Moosavi F . J. Phys. Chem. C, 2011,115(13):5626.
[104]
Maity N, Mandal A, Nandi A K . Polymer, 2015,65:154.
[105]
Severa G, Bethune K, Rocheleau R, Higgins S . Chem. Eng. J., 2015,265:249. https://linkinghub.elsevier.com/retrieve/pii/S1385894714016635

doi: 10.1016/j.cej.2014.12.051     URL    
[106]
Pal A, Shahrom M S R, Moniruzzaman M, Wilfred C D, Mitra S, Thu K, Saha B B . Chem. Eng. J., 2017,326:980.
[107]
Yan J Y, Shang J J, Fu Y, Li D Q, Liu Z Y . Chemical Engineering & Technology, 2018,41(5):907.
[108]
Liang H W, Wei W, Wu Z S, Feng X, Müllen K . J. Am. Chem. Soc., 2013,135(43):16002. https://www.ncbi.nlm.nih.gov/pubmed/24128393

doi: 10.1021/ja407552k     URL     pmid: 24128393
[109]
Yang W, Fellinger T P, Antonietti M . J. Am. Chem. Soc., 2011,133(2):206.
[110]
Huang B B, Luo Z Y, Zhang J J, Xie Z L . RSC Advances, 2017,7(29):17941.
[111]
Cui Z, Wang S, Zhang Y, Cao M . J. Power Sources, 2014,259:138. https://linkinghub.elsevier.com/retrieve/pii/S0378775314002778

doi: 10.1016/j.jpowsour.2014.02.084     URL    
[112]
Zhu Z, Qu L, Li X, Zeng Y, Sun W, Huang X . Electrochim. Acta, 2010,55(20):5959.
[113]
Ji L, Yan J, Mietek J, Zhang Q S . Angew. Chem. Int. Ed., 2012,51(46):11496. https://www.ncbi.nlm.nih.gov/pubmed/23055257

doi: 10.1002/anie.201206720     URL     pmid: 23055257
[114]
Chen Y, Wang H, Ji S, Lv W, Wang R . Materials, 2017,10(12):1366.
[115]
Qiu B, Pan C, Qian W, Peng Y, Qiu L, Yan F . J. Mater. Chem. A, 2013,1(21):6373.
[116]
Miao L, Duan H, Liu M, Lu W, Zhu D, Chen T, Li L, Gan L . Chem. Eng. J., 2017,317:651.
[117]
Sun L, Zhou H, Li Y, Yu F, Zhang C, Liu X, Zhou Y . Mater. Lett., 2017,189:107.
[118]
Zhu X, Hillesheim P C, Mahurin S M, Wang C, Tian C, Brown S, Luo H, Veith Gabriel M, Han K S, Hagaman E W, Liu H, Dai S . ChemSusChem, 2012,5(10):1912. https://www.ncbi.nlm.nih.gov/pubmed/22907832

doi: 10.1002/cssc.201200355     URL     pmid: 22907832
[119]
Polo-Luque M L, Simonet B M, Valcárcel M . Talanta, 2013,110:160. https://www.ncbi.nlm.nih.gov/pubmed/23618189

doi: 10.1016/j.talanta.2013.02.030     URL     pmid: 23618189
[120]
Rauf S, Nawaz M A H, Muhammad N, Raza R, Shahid S A, Marty J L, Hayat A . J. Mol. Liq., 2017,243:333. https://linkinghub.elsevier.com/retrieve/pii/S0167732217325886

doi: 10.1016/j.molliq.2017.08.059     URL    
[121]
Anju J, Chavan S N, Mandal D, Nagaiah T C . Electroanalysis, 2016,28(10):2373.
[122]
Laura R P, Christian P, Philippe S, Montserrat G, Emmanuelle T . ChemCatChem, 2011,3(4):749.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[8] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[9] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[10] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[11] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[12] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[15] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.