English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 491-504 DOI: 10.7536/PC181006 前一篇   后一篇

• •

柱芳烃机械互锁结构的制备及功能化

薛敏1,**(), 范芳芳1, 杨勇1, 陈传峰2   

  1. 1. 浙江理工大学物理系 杭州 310018
    2. 北京分子科学国家实验室 北京 100190
  • 收稿日期:2018-10-09 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 薛敏
  • 基金资助:
    国家自然科学基金项目(21772178); 浙江理工大学521人才培养计划资助()

Syntheses and Functionality of Pillararene-Based Mechanically Interlocked Structures

Min Xue1,**(), Fangfang Fan1, Yong Yang1, Chuanfeng Chen2   

  1. 1. Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
    2. Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
  • Received:2018-10-09 Online:2019-01-15 Published:2019-01-14
  • Contact: Min Xue
  • About author:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21772178); 521 Talent Program of Zhejiang Sci-Tech University.()

柱芳烃是一类具有柱状空腔结构的大环主体,近年来逐渐成为主客体作用构筑超分子体系的重要模块之一。柱芳烃家族包含柱[5]芳烃到柱[15]芳烃等成员,其中柱[5]芳烃为热力学稳定产物,合成产率最高;其次为柱[6]芳烃。柱[5]芳烃或柱[6]芳烃可做为主体,参与构筑[1](准)轮烷、[1](准)索烃等机械自锁结构,以及[n]轮烷(n≥2)、[2]索烃、雏菊链等机械互锁结构;体系中独立分子之间存在相对运动,如轮烷中柱芳烃在轴线上可以进行穿梭运动;丰富的衍生基团赋予柱芳烃互锁结构相应的功能,如手性翻转、荧光共振能量转移、超分子凝胶、Langmuir膜、催化反应等,甚至基于柱芳烃轮烷还可构筑更复杂的树枝状分子。本文综述了柱芳烃超分子互锁体系的研究进展,详细阐述了基于柱芳烃的互锁结构的合成方法及其功能化并讨论了其在构筑分子器件及其他超分子复杂体系方面的应用前景。

Pillararene, a type of macrocyclic host containing a pillar-shaped cavity, has recently become an important building block to construct supramolecular systems based on host-guest interactions. Pillararenes contain family members from pillar[5]arene to pillar[15]arene. Pillar[5]arene consisting of five hydroquinone units is thermostable product and can be obtained in highest yield; then the yield of pillar[6]arene is relatively low, but still show its various functionality. Using pillar[5]arene or pillar[6]arene hosts, a variety of mechanically selflocked molecules such as(pseudo)[1]rotaxanes and(pseudo)[1]catenanes, and mechanically interlocked molecules such as [n]rotaxanes(n≥2), [2]catenanes and [c2]daisy chains have been fabricated. The independent units in such supramolecular systems often show their relative motion compared with other units. For example, the pillararene ring in a [2]rotaxane molecule generally shuttles along the axle unit of the system. Various derivative groups on these interlocked structures endow them with different functions, such as chirality inversion, F?rster resonance energy transfer, supramolecular gels, Langmuir film, organic catalyst, and even construction of rotaxane-branched dendrimers. In this review, we summarize the research progress of pillararene-based supramolecular self- and interlocked systems. The synthetic strategies and functions of these molecules are focused on, suggesting its prospective application in construction of molecular devices and other complicated supramolecular architectures.

()
图1 部分机械互锁结构示例
Fig. 1 Examples of mechanically interlocked molecules
图2 (a) 第一例柱[5]芳烃[2]轮烷1[30],(b)酰胺化反应封端的一系列柱[5]芳烃[2]轮烷2[32]
Fig. 2 (a) The first example of pillar[5]arene-based [2]rotaxane 1[30],(b) pillar[5]arene-based [2]rotaxane 2 stopped by amide formation reaction[32]
图3 液态柱[5]芳烃3作为溶剂制备[2]轮烷4[35]
Fig. 3 Construction of [2]rotaxane 4 using liquid pillar[5]arene 3 as the solvent[35]
图4 滑入法制备柱[5]芳烃[2]轮烷6和7[36]
Fig. 4 Synthesis of pillar[5]arene-based [2]rotaxanes 6 and 7 through Slipping method[36]
图5 模板作用制备[4]轮烷和[5]轮烷[37]
Fig. 5 Construction of [4]rotaxanes and [5]rotaxanes through orthogonal template interactions[37]
图6 “Click”反应制备柱[5]芳烃[2]轮烷10a和柱[6]芳烃[2]轮烷10b[38]
Fig. 6 Construction of pillar[5]arene-based [2]rotaxane 10a and pillar[6]arene-based [2]rotaxane 10b through “Click” reaction[38]
图7 雏菊链互锁结构12的合成[40]
Fig. 7 Synthesis of [c2]daisy chain 12[40]
图8 非共价雏菊链15的自组装[41]
Fig. 8 Self-assembly of noncovalent [c2]daisy chain 15[41]
图9 动态[1]索烃17的自组装[43]
Fig. 9 Self-assembly of dynamic [1]catenane 17[43]
图10 柱[5]芳烃[2]索烃19的合成[44]
Fig. 10 Synthesis of pillar[5]arene-based [2]catenane 19[44]
图11 自锁结构21~23的合成[29]
Fig. 11 Syntheses of mechanically selflocked molecules 21~23[29]
图12 [1]轮烷25[48]和[1]准轮烷26的合成[49]
Fig. 12 Syntheses of [1]rotaxane 25[48] and pseudo[1]rotaxane 26[49]
图13 [1]轮烷28的合成[51]
Fig. 13 Synthesis of [1]rotaxane 28[51]
图14 柱[5]芳烃在[2]轮烷29中的穿梭运动[52]
Fig. 14 Shuttling mobility of pillar[5]arene in [2]rotaxane 29[52]
图15 柱[5]芳烃在[2]轮烷30中的穿梭运动[55]
Fig. 15 Shuttling mobility of pillar[5]arene in [2]rotaxane 30[55]
图16 柱[6]芳烃在[2]轮烷10b中的穿梭运动[38]:(a) 结构图示,(b) CDCl3中[2]轮烷10b的变温一维核磁氢谱。
Fig. 16 Shuttling mobility of pillar[6]arene in [2]rotaxane 10b[38]:(a) chemical structure of [2]rotaxane 10b,(b) partial variable-temperature 1H NMR spectra of [2]rotaxane 10b in CDCl3
图17 雏菊链结构12中的拉伸/收缩运动,(a) CDCl3,(b) CDCl3∶DMSO=2∶1(v/v),(c) DMSO[40]
Fig. 17 Stretching/contraction mobility of pillar[5]arene in [c2]daisy chain 12 in(a) CDCl3,(b) CDCl3∶DMSO=2∶1(v/v),(c) DMSO[40]
图18 (a)含较小取代基柱[5]芳烃的异构体,(b) [2]轮烷31[34]、[3]轮烷32[34]和[4]轮烷33[39]的结构式
Fig. 18 (a) Isomers of pillar[5]arenes containing small groups,(b) chemical structures of [2]rotaxane 31[34], [3]rotaxane 32[34] and [4]rotaxane 33[39]
图19 [1]准索烃34的手性翻转[45]
Fig. 19 Chiral inversion of [1]pseudocatenane 34[45]
图20 [2]轮烷36的化学结构式和荧光共振能量转移[59]
Fig. 20 The chemical structure and F?rster resonance energy transfer of [2]rotaxane 36[59]
图21 [2]轮烷37的化学结构式和荧光发射光谱(氯仿溶液, [c]=1×10-5 mol/L):(a) 滴加三乙胺TEA,(b) 滴加三氟乙酸TFA[53]
Fig. 21 The chemical structure and fluorescence emission spectra of [2]rotaxane 37 in CHCl3([c]=1×10-5 mol/L):(a) upon addition of TEA,(b) upon addition of TFA[53]
图22 [2]轮烷29的化学结构式和自组装响应性凝胶:(a) 凝胶/溶液可逆转换,(b~e) 冷冻干燥后的扫描电镜图像[52]
Fig. 22 The chemical structure and self-assembly stimuli-responsive gel of [2]rotaxane 29:(a) reversible sol-gel transitions,(b~e) SEM images of freeze-dried supramolecular gels[52]
图23 (a) [2]轮烷38a,b的化学结构式,(b) [2]轮烷38a在表面压力为45 mN/m作用下和(c) [2]轮烷38b在表面压力为12 mN/m作用下形成的Langmuir膜[61]
Fig. 23 (a) The chemical structure of [2]rotaxane 38a,b, the Langmuir films of(b) [2]rotaxane 38a with the surface pressure at 45 mN/m and(c) [2]rotaxane 38b with the surface pressure at 12 mN/m[61]
图24 轮烷树枝状分子G1~G4的合成[63]
Fig. 24 Construction of rotaxane-branched dendrimers G1~G4[63]
图25 [2]轮烷40和轮烷树枝状分子的环穿梭运动[64]
Fig. 25 Shuttling motivition of [2]rotaxane 40 and the relative rotaxane-branched dendrimers[64]
[1]
Gokel G W, Leevy W M ,Weber M E . Chem. Rev, 2004,104:2723.
[2]
Harada A, Hashidzume A, Yamaguchi H, Takashima Y . Chem. Rev 2009,109:5974.
[3]
Bhasikuttan A C, Pal H, Mohanty J . Chem. Commun 2011,47:9959.
[4]
Li C, Han K, Li J, Zhang H, Ma J, Shu X, Chen Z, Weng L, Jia X . Org. Lett 2012,14:42.
[5]
Chen C F ,Han Y . Acc. Chem. Res, 2018,51:2093.
[6]
Xue M, Yang Y, Chi X, Zhang Z ,Huang F . Acc. Chem. Res, 2012,45:1294.
[7]
Ogoshi T, Yamagishi T A, Nakamoto Y . Chem. Rev 2016,116:7937.
[8]
Jie K, Zhou Y, Li E ,Huang F . Acc. Chem. Res, 2018,51:2064.
[9]
Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z ,Huang F . Angew. Chem. Int. Ed., 2011,50:1397.
[10]
Shu X, Chen S, Li J, Chen Z, Weng L, Jia X, Li C . Chem. Commun 2012,48:2967.
[11]
Li C, Ma J, Zhao L, Zhang Y, Yu Y, Shu X, Li J, Jia X . Chem. Commun 2013,49:1924.
[12]
Ogoshi T, Nishida Y, Yamagishi T A, Nakamoto Y . Macromolecules, 2010,43:7068.
[13]
Han C, Zhang Z, Yu G, Huang F . Chem. Commun 2012,48:9876.
[14]
Jie K, Liu M, Zhou Y, Little M A, Pulido A, Chong S Y, Stephenson A, Hughes A R, Sakakibara F, Ogoshi T, Blanc F, Day G M, Huang F, Cooper A I . Am. Chem. Soc., 2018,140:6921. https://www.ncbi.nlm.nih.gov/pubmed/29754488

doi: 10.1021/jacs.8b02621     URL     pmid: 29754488
[15]
Jie K, Zhou Y, Li E, Zhao R ,Huang F . Angew. Chem. Int. Ed., 2018,57:12845.
[16]
Wu X, Duan Q P, Ni M F, Hu X Y ,Wang L Y . Chin. J. Org. Chem., 2014,34:437.
[17]
Si W, Chen L, Hu X B, Tang G, Chen Z, Hou J L ,Li Z T . Angew. Chem. Int. Ed., 2011,50:12564.
[18]
Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L . Am. Chem. Soc., 2013,135:10542. https://www.ncbi.nlm.nih.gov/pubmed/23795864

doi: 10.1021/ja405014r     URL     pmid: 23795864
[19]
Yu G, Yu W, Mao Z, Gao C, Huang F . Small, 2015,11:919.
[20]
Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W ,Pei Z . Angew. Chem. Int. Ed., 2014,53:13126.
[21]
Li H, Chen D X, Sun Y L, Zheng Y B, Tan L L, Weiss P S, Yang Y W . Am. Chem. Soc., 2013,135:1570. https://www.ncbi.nlm.nih.gov/pubmed/23256789

doi: 10.1021/ja3115168     URL     pmid: 23256789
[22]
Tan L L, Li H, Tao Y, Zhang S X, Wang B ,Yang Y W . Adv. Mater, 2014,26:7027.
[23]
Zhang H, Ma X, Nguyen K T, Zhao Y . ACS Nano, 2013,7:7853.
[24]
Jie K, Liu M, Zhou Y, Little M A, Bonakala S, Chong S Y, Stephenson A, Chen L, Huang F, Cooper A I . Am. Chem. Soc., 2017,139:2908. https://www.ncbi.nlm.nih.gov/pubmed/28182420

doi: 10.1021/jacs.6b13300     URL     pmid: 28182420
[25]
Stoddart J F. Angew. Chem. Int. Ed., 2017,56:11094.
[26]
Xue M, Yang Y, Chi X, Yan X, Huang F . Chem. Rev 2015,115:7398.
[27]
Langton M J ,Beer P D . Acc. Chem. Res, 2014,47:1935.
[28]
Lu Y, Zhang H N ,Jin G X . Acc. Chem. Res, 2018,51:2148.
[29]
Li S H, Zhang H Y, Xu X, Liu Y . Nat.Commun., 2015,6:7590.
[30]
Strutt N L, Forgan R S, Spruell J M, Botros Y Y, Stoddart J F . Am. Chem. Soc., 2011,133:5668. https://www.ncbi.nlm.nih.gov/pubmed/21443238

doi: 10.1021/ja111418j     URL     pmid: 21443238
[31]
Wei P F, Yan X Z, Li J Y, Ma Y J, Yao Y, Huang F H . Tetrahedron, 2012,68:9179.
[32]
Milev R, Lopez-Pacheco A, Nierengarten I , Trinh T M N, Holler M, Deschenaux R, Nierengarten J F . Eur. Org. Chem., 2015,2015:479.
[33]
Dong S Y, Han C Y, Zheng B, Zhang M M ,Huang F H . Tetrahedron Lett, 2012,53:3668.
[34]
Ogoshi T, Yamafuji D, Aoki T, Kitajima K, Yamagishi T A, Hayashi Y, Kawauchi S . Chem.-Eur. J., 2012,18:7493.
[35]
Ogoshi T, Aoki T, Shiga R, Iizuka R, Ueda S, Demachi K, Yamafuji D, Kayama H, Yamagishi T A . Am. Chem. Soc., 2012,134:20322. https://www.ncbi.nlm.nih.gov/pubmed/23205818

doi: 10.1021/ja310757p     URL     pmid: 23205818
[36]
Ogoshi T, Tamura Y, Yamafuji D, Aoki T ,Yamagishi T A . Chem. Commun, 2016,52:10297.
[37]
Ke C, Strutt N L, Li H, Hou X, Hartlieb K J, McGonigal P R, Ma Z, Iehl J, Stern C L, Cheng C, Zhu Z, Vermeulen N A, Meade T J, Botros Y Y, Stoddart J F. . Am. Chem. Soc., 2013,135:17019. https://www.ncbi.nlm.nih.gov/pubmed/24059594

doi: 10.1021/ja407229h     URL     pmid: 24059594
[38]
Ogoshi T, Yamafuji D, Aoki T ,Yamagishi T A . Chem. Commun, 2012,48:6842.
[39]
Hou X, Ke C, Cheng C, Song N, Blackburn A K, Sarjeant A A, Botros Y Y, Yang Y W ,Stoddart J F . Chem. Commun, 2014,50:6196.
[40]
Zhang Z B, Han C Y, Yu G C ,Huang F H . Chem. Sci, 2012,3:3026.
[41]
Zhang Q, Zhang C H, Yang J H, Xin P Y, Xuan X P, Wang J G, Ma N N, Guo H M ,Qu G R . Chem. Commun, 2015,51:15253.
[42]
Zhu X Z, Chen C F . Am. Chem. Soc., 2005,127:13158. https://www.ncbi.nlm.nih.gov/pubmed/16173739

doi: 10.1021/ja0546020     URL     pmid: 16173739
[43]
Yan X, Wei P, Li Z, Zheng B, Dong S, Huang F H, Zhou Q . Chem.Commun ., 2013,49:2512.
[44]
Kitajima K, Ogoshi T ,Yamagishi T A . Chem. Commun, 2014,50:2925.
[45]
Ogoshi T, Akutsu T, Yamafuji D, Aoki T ,Yamagishi T A . Angew. Chem. Int. Ed., 2013,52:8111.
[46]
Cheng M, Wang Q, Cao Y H, Pan Y, Yang Z, Jiang J L ,Wang L Y . Tetrahedron Lett, 2016,57:4133.
[47]
Yao J, Wu W, Liang W, Feng Y, Zhou D, Chruma J J, Fukuhara G, Mori T, Inoue Y ,Yang C . Angew. Chem. Int. Ed., 2017,56:6869.
[48]
Xia B, Xue M . Chem.Commun ., 2014,50:1021.
[49]
Jiang S, Han Y, Cheng M, Sun J, Yan C G, Jiang J L ,Wang L Y . New J Chem., 2018,42:7603.
[50]
Han Y, Huo G F, Sun J, Xie J, Yan C G, Zhao Y, Wu X, Lin C, Wang L . Sci. Rep ., 2016,6:28748.
[51]
Du X S, Wang C Y, Jia Q, Deng R, Tian H S, Zhang H Y, Meguellati K ,Yang Y W . Chem. Commun, 2017,53:5326.
[52]
Dong S Y, Yuan J Y ,Huang F H . Chem. Sci, 2014,5:247.
[53]
Sun N, Xiao X, Li W, Jiang J . Adv. Sci 2015,2:1500082.
[54]
Liu Y, Chipot C, Shao X, Cai W . J. Phys. Chem. C, 2016,120:6287.
[55]
Ogoshi T, Iizuka R, Kotera D ,Yamagishi T A . Org. Lett, 2015,17:350.
[56]
Wang S S, Shao X G, Cai W S . J. Phys. Chem. C, 2017,121:25547.
[57]
Ogoshi T, Kotera D, Nishida S, Kakuta T, Yamagishi T A, Brouwer A M . Chem.-Eur. J., 2018,24:6325.
[58]
Yuan L, Lin W, Zheng K ,Zhu S . Acc. Chem. Res, 2013,46:1462.
[59]
Ogoshi T, Yamafuji D, Yamagishi T A ,Brouwer A M . Chem. Commun, 2013,49:5468.
[60]
Krafft M P . Acc. Chem. Res., 2012,45:514.
[61]
Trinh T M, Nierengarten I, Holler M, Gallani J L, Nierengarten J F . Chem.-Eur. J., 2015,21:8019.
[62]
Rosen B M, Wilson C J, Wilson D A, Peterca M, Imam M R ., Percec V. Chem. Rev 2009,109:6275.
[63]
Wang W, Chen L J, Wang X Q, Sun B, Li X, Zhang Y, Shi J, Yu Y, Zhang L, Liu M ,Yang H B . Proc. Natl. Acad. Sci. U.S. A., 2015,112:5597.
[64]
Wang X Q, Wang W, Li W J, Chen L J, Yao R, Yin G Q, Wang Y X, Zhang Y, Huang J, Tan H, Yu Y, Li X, Xu L ,Yang H B . Nat. Commun., 2018,9:3190.
[1] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[2] 汪含笑, 韩莹, 陈传峰*. 基于三维不对称主体的客体方向选择性穿线作用及其组装体的构建[J]. 化学进展, 2018, 30(5): 616-627.
[3] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[4] 张双进, 杨扬, 孙小强, 尹芳华, 强琚莉, 王乐勇. 酸碱驱动的分子机器研究与应用[J]. 化学进展, 2016, 28(2/3): 244-259.
[5] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[6] 叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军. 金属配位与主客体识别协同组装构筑机械互锁结构[J]. 化学进展, 2015, 27(6): 763-774.
[7] 杨再文, 刘向荣, 赵顺省, 何金梅. 化学驱动的[2]轮烷型分子梭[J]. 化学进展, 2014, 26(12): 1899-1913.
[8] 孙书, 石建兵, 董宇平, 胡晓玉, 王乐勇. 准聚轮烷的研究进展[J]. 化学进展, 2014, 26(08): 1409-1426.
[9] 刘鹏, 邵学广, 蔡文生*. 准轮烷/轮烷在药物载体中的应用[J]. 化学进展, 2013, 25(05): 692-697.
[10] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.
[11] 董海青, 李永勇, 李兰, 时东陆. 生物医用类环糊精/聚合物(准)聚轮烷[J]. 化学进展, 2011, 23(5): 914-922.
[12] 赵三平 徐卫林. 环糊精超分子水凝胶*[J]. 化学进展, 2010, 22(05): 916-926.
[13] 杨辉,谭业邦,黄晓玲,王月霞. 葫芦脲的研究进展*[J]. 化学进展, 2009, 21(01): 164-173.
[14] 靖波,陈晓,柴永存. 环糊精与大分子组装(准)聚轮烷*[J]. 化学进展, 2006, 18(10): 1361-1368.