English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 245-257 DOI: 10.7536/PC180539 前一篇   后一篇

• •

二氧化碳电催化还原产乙烯: 催化剂、反应条件和反应机理

杨梦茹, 李华静, 罗宁丹, 李锦, 周安宁, 李远刚**()   

  1. 1. 西安科技大学化学与化工学院 西安 710054
  • 收稿日期:2018-05-30 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 李远刚
  • 基金资助:
    胶体、界面与化学热力学中国科学院重点实验室开放课题

Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism

Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li**()   

  1. 1. College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
  • Received:2018-05-30 Online:2019-02-15 Published:2018-12-20
  • Contact: Yuangang Li
  • About author:
  • Supported by:
    Open Foundation of Key Laboratory of Colloids, Interface and Chemical Thermodynamics of Chinese Academy of Sciences

电化学还原二氧化碳为乙烯不仅能缓解温室效应而且能得到高附加值的石油化工产品乙烯。本文综述了近年来电催化还原二氧化碳产乙烯的研究进展,着重介绍了能将二氧化碳还原为乙烯的电催化剂,其中铜基催化剂是高选择性产生乙烯的有效电极材料,对铜催化剂进行掺杂、改性和修饰能够在保持催化剂高选择性产生乙烯的同时提高催化剂的稳定性和活性。本文还涉及了电催化条件下乙烯形成的机理以及反应条件对乙烯选择性的影响,简要介绍了二氧化碳在催化剂表面的三种吸附态和Cu(100)晶面形成乙烯的机理,以及不同电位、温度、压力、电解液组成和pH值对乙烯选择性的影响。最后,总结并展望了二氧化碳电催化还原产乙烯催化剂开发亟待解决的问题和未来的发展方向,期望为新型催化剂的构筑提供有益参考。

Electrochemical reduction of carbon dioxide into ethylene not only can alleviate the greenhouse effect but also obtain ethylene as one of the high value-added petrochemicals. The article reviews recent advances in the field of carbon dioxide electro-catalytic reduction to produce ethylene, and mainly focus on the electro-catalysts for the reduction of carbon dioxide into ethylene. Copper-based catalyst is an active ingredient for highly selective generation of ethylene. Doping, modifying or decorating copper-based catalyst can increase the stability and activity of the catalyst while maintaining the high selectivity of the catalyst for ethylene. The mechanism for ethylene formation under electro-catalytic conditions and the effect of reaction conditions on ethylene selectivity are also included. Three adsorptive states of carbon dioxide on the surface of catalyst and the mechanism of ethylene formation on the Cu(100) crystal face are briefly described. The effects of electrode potential, temperature, pressure, the composition of electrolyte and pH on ethylene selectivity are also considered. Finally, the issues in the field of catalyst development and research for reducing carbon dioxide into ethylene are summarized and prospected.

()
表1 在1.0 atm 和25 ℃下水溶液中CO2还原的标准电势[5]
Table 1 Standard potentials of CO2 reduction to various products in aqueous solutions at 1.0 atm and 25 ℃[5].(Adapted with permission, Royal Society of Chemistry ?2014.)
图1 不同二氧化碳还原产物可能的反应途径[6]
Fig. 1 Proposed reaction pathway for carbon dioxide reduction products[6].(Adapted with permission, American Chemical Society ?2015.)
图2 CO2与CO质子化自由能变的密度函数理论计算结果,裸铜(红)与负载甘氨酸的铜(蓝)[20]
Fig. 2 The DFT calculated free energy change of CO2 and CO protonation without glycine(blue line) and with zwitterionic glycine(red line)[20].(Adapted with permission, Royal Society of Chemistry ?2016.)
图3 (a) Cu2+循环方法示意图;(b) 不同Cu2+循环次数所得样品的SEM图[36]
Fig. 3 (a)The method of Cu2+ ion battery cycling;(b) SEM image of Cu2+ ion battery cycling[36].(Adapted with permission, Springer Nature ?2018.)
图4 (a)裸铜、(b)电抛光、(c)热退火、(d)电沉积铜[37]
Fig. 4 Optical images of the Cu skeleton type of catalysts:(a) as-received Cu;(b) electropolished Cu;(c) annealed Cu;(d) functional Cu foam electrodeposited on Cu skeleton[37].(Adapted with permission, American Chemical Society ?2017.)
图5 (a)有序(b)无序和(c)相分离的CuPd催化剂TEM;(d)有序(e)无序和(f)相分离的CuPd催化剂EDS Maping图谱[38]
Fig. 5 TEM of(a) ordered,(b) disordered,(c) phase separated; Combined EDS elemental maps of Cu(red) and Pd(green) of(d) ordered,(e) disordered,(f) phase Separated[38].(Adapted with permission, American Chemical Society ?2017.)
图6 (a)产物电流效率;(b)铜卟啉结构[42]
Fig. 6 (a) Faradaic efficiency of CO2 reduction products;(b) structure of copper-porphyrin molecular catalysts[42].(Adapted with permission, American Chemical Society ?2016.)
图7 酞菁铜结构[43]
Fig. 7 Structure of CuPc molecular catalysts[43].(Adapted with permission, Springer Nature ?2018.)
图8 钯诱导铜表面重构避免碳沉积示意图[57]
Fig. 8 Schematic illustration of Pd-induced surface restrictoring that can avoid the accumulation of carbonaceous species on Cu surface[57].(Adapted with permission, John Wiley & Sons,Inc. ?2018.)
图9 气体扩散电极的阴极部分的示意图[58]
Fig. 9 Schematic of the cathode portion of a gas diffusion electrode[58].(Adapted with permission, AAAS ?2018.)
图10 CO2可能的吸附态结构
Fig. 10 Possible structures of adsorbed CO2
图11 Cu(100)型铜晶体催化生成乙烯的可能机理[61]
Fig. 11 One explanation for the catalysis of ethylene formation on Cu(100) type copper crystals[61].(Adapted with permission, American Chemical Society ?2012.)
图12 铜表面电化学还原二氧化碳为乙烯的机理[61]
Fig. 12 Proposed mechanism for the electrochemical reduction of carbon dioxide to ethylene on copper[61].(Adapted with permission, American Chemical Society ?2012.)
图13 催化剂EDS Mapping图[29]
Fig. 13 The EDS images of catalysts[29].(Adapted with permission, Springer Nature ?2016.)
表2 0.1 M HCO3-溶液中不同离子CO2还原产物的电流效率
Table 2 Current efficiencies of the products in CO2 reduction in 0.1 M bicarbonate solutions
图14 阴极稳定性测试[58]
Fig. 14 Stability test of the cathode electrode[58].(Adapted with permission, AAAS ?2018.)
表3 铜电极在不同浓度电解液中电化学还原CO2所得产物的法拉第效率以及乙烯的选择性
Table 3 Faradaic efficiencies for the products obtained in the electrochemical CO2 reduction and the selectivity of ethylene on a Cu electrode in solutions of various concentrations
图15 各还原产物在不同电位下的电流效率曲线[6]
Fig. 15 Current efficiency for each product on various potentials[6].(Adapted with permission, American Chemical Society ?2015.)
图16 不同(a)浓度和(b)压力下产物的法拉第效率[69]
Fig. 16 Product current densities of CO2 reduction as a function of electrolyte concentration(a), and pressure(b)[69].(Adapted with permission, Wiley-VCH Verlag GmbH & Co. KGa?2015.)
[1]
Lund H . Energy, 2007,32:912.
[2]
Doney S C, Balch W M, Fabry V J, Feely R A . Oceanography, 2009,22:16. https://www.ncbi.nlm.nih.gov/pubmed/21386404

doi: 10.1088/0953-8984/22/16/162201     URL     pmid: 21386404
[3]
McMichael A J, Woodruff R E, Hales S . Lancet, 2006,367:859. https://www.ncbi.nlm.nih.gov/pubmed/16530580

doi: 10.1016/S0140-6736(06)68079-3     URL     pmid: 16530580
[4]
Boot-Handford M E, Abanades J C, Anthony E J, Blunt M J, Brandani S, Dowell N M, Fernández J R, Ferrari M C, Gross R, Hallett J P, Haszeldine R S, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter R T J, Pourkashanian M, Rochelle G T, Shah N, Yao J G, Fennell P S . Energ. Environ. Sci., 2014,7:130.
[5]
Qiao J, Liu Y, Hong F, Zhang J . Chem. Soc. Rev., 2014,43:631. https://www.ncbi.nlm.nih.gov/pubmed/24186433

doi: 10.1039/c3cs60323g     URL     pmid: 24186433
[6]
Kortlever R, Shen J, Schouten K J, Calle-Vallejo F, Koper M T . J. Phys. Chem. Lett., 2017,6:4073. https://www.ncbi.nlm.nih.gov/pubmed/26722779

doi: 10.1021/acs.jpclett.5b01559     URL     pmid: 26722779
[7]
Zuman P . Microchem. J., 1986,34:245.
[8]
Ogura K, Oohara R, Kudo Y . Chin. J. Cancer, 2011,258:238.
[9]
Zhang L, Zhao Z J, Gong J . Angew. Chem. Int. Ed., 2017,56:38.
[10]
Hori Y, Kikuchi K, Suzuki S . Chem. Lett., 1985,14:1695.
[11]
Hong J, Zhang W, Ren J, Xu R . Anal. Methods, 2013,5:1086.
[12]
刘孟岩(Liu M Y), 王元双(Wang Y S), 邓雯(Deng W), 温珍海(Weng Z H) . 化学进展 (Progress in Chemistry), 2018,30:389.
[13]
Hori Y, Murata A, Takahashi R, Suzuki S . J. Am. Chem. Soc., 1987,109:16.
[14]
Kuhl K P, Cave E R, Abram D N, Jaramillo T F . Energ. Environ. Sci., 2012,5:7050.
[15]
Hori Y, Murata A, Takahashi R, Suzuki S . J. Chem. Soc. Chem. Commun., 1988,19:17.
[16]
Hori Y, Takahashi I, Koga O, Hoshi N . J. Mol. Catal. A-Chem., 2003,199:39.
[17]
Roberts F S, Kuhl K P, Nilsson A . Angew. Chem. Int. Ed., 2015,54:5179. https://www.ncbi.nlm.nih.gov/pubmed/25728325

doi: 10.1002/anie.201412214     URL     pmid: 25728325
[18]
Hara K, Tsuneto A, Kudo A, Sakata T . J. Electroanal. Chem., 1997,434:239.
[19]
Tang W, Peterson A A, Varela A S, Jovanov Z P, Bech L, Durand W J, Dahl S, Norskov J K, Chorkendorff I . Phys. Chem. Chem. Phys., 2012,14:76. https://www.ncbi.nlm.nih.gov/pubmed/22071504

doi: 10.1039/c1cp22700a     URL     pmid: 22071504
[20]
Xie M S, Xia B Y, Li Y, Yan Y, Yang Y, Sun Q, Chan S H, Fisher A, Wang X . Energ. Environ. Sci., 2016,9:1687. https://www.ncbi.nlm.nih.gov/pubmed/12403017

doi: 10.1081/ese-120015430     URL     pmid: 12403017
[21]
Peterson A A, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov J K . Energ. Environ. Sci., 2010,3:1311.
[22]
Shibata M, Furuya N . Electrochimi. Acta, 2003,48:3953.
[23]
Cook R L, Macduff R C, Sammells A F . J. Electrochem. Soc., 1987,18:2375.
[24]
Kim D, Kley C S, Li Y, Yang P . Proc. Natl. Acad. Sci. U.S. A., 2017,114:10560. https://www.ncbi.nlm.nih.gov/pubmed/28923930

doi: 10.1073/pnas.1711493114     URL     pmid: 28923930
[25]
Baturina O A, Lu Q, Padilla M A, Xin L, Li W, Serov A, Artyushkova K, Atanassov P, Xu F, Epshteyn A, Brintlinger T, Schuette M, Collins G E . ACS Catal., 2014,4:3682.
[26]
Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S . Nano Energy, 2016,24:1.
[27]
Cook R L, Macduff R C, Sammells A F . J. Electrochem. Soc., 1990,137:607.
[28]
Ikeda S, Ito K, Noda H, Rusop M, Soga T . AIP Conf. Proce., 2009,1136:108.
[29]
Mistry H, Varela A S, Bonifacio C S, Zegkinoglou I, Sinev I, Choi Y W, Kisslinger K, Stach E A, Yang J C, Strasser P, Cuenya B R . Nat. Commun., 2016,7:12123. https://www.ncbi.nlm.nih.gov/pubmed/27356485

doi: 10.1038/ncomms12123     URL     pmid: 27356485
[30]
Eilert A, Cavalca F, Roberts F S, Osterwalder J, Liu C, Favaro M, Crumlin E J, Ogasawara H, Friebel D, Pettersson L G M . J. Phys. Chem. Lett., 2017,8:285. https://www.ncbi.nlm.nih.gov/pubmed/27983864

doi: 10.1021/acs.jpclett.6b02273     URL     pmid: 27983864
[31]
Ren D, Deng Y, Handoko A D, Chen C S, Malkhandi S, Yeo B S . ACS Catal., 2015,5:2814.
[32]
Li C W, Kanan M W . J. Am. Chem. Soc., 2012,134:7231. https://www.ncbi.nlm.nih.gov/pubmed/22506621

doi: 10.1021/ja3010978     URL     pmid: 22506621
[33]
Kim D, Lee S, Ocon J D, Jeong B, Lee J K, Lee J . Phys. Chem. Chem. Phys., 2015,17:824. https://www.ncbi.nlm.nih.gov/pubmed/25297636

doi: 10.1039/c4cp03172e     URL     pmid: 25297636
[34]
Kas R, Kortlever R, Milbrat A, Koper M T M, Mul G, Baltrusaitis J . Phys. Chem. Chem. Phys., 2014,16:12194. https://www.ncbi.nlm.nih.gov/pubmed/24817571

doi: 10.1039/c4cp01520g     URL     pmid: 24817571
[35]
Zhu D D, Liu J L, Qiao S Z . Adv. Mater., 2016,47:3423.
[36]
Jiang K, Sandberg R B, Akey A J, Liu X, Bell D C, Norskov J K, Chan K, Wang H . Nat. Catal., 2018,1:111.
[37]
Dutta A, Rahaman M, Mohos M, Zanetti A, Broekmann P . ACS Catal., 2017,7:5431.
[38]
Ma S, Sadakiyo M, Heima M, Luo R, Haasch R T, Gold J I, Yamauchi M, Kenis P J . J. Am. Chem. Soc., 2017,139:47. https://www.ncbi.nlm.nih.gov/pubmed/27958727

doi: 10.1021/jacs.6b10740     URL     pmid: 27958727
[39]
Ishimaru S, Shiratsuchi R, Nogami G . J. Electrochem. Soc., 2000,147:1864.
[40]
Chang Z Y, Huo S J, He J M, Fang J H . Surf. Interfaces, 2017,6:116.
[41]
Christophe J, Doneux T, Buess-Herman C . Electrocatal., 2012,3:139.
[42]
Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna K L, Liu W, Batista V S, Brudvig G W, Wang H . J. Am. Chem. Soc., 2016,138:8076. https://www.ncbi.nlm.nih.gov/pubmed/27310487

doi: 10.1021/jacs.6b04746     URL     pmid: 27310487
[43]
Weng Z, Wu Y, Wang M, Jiang J, Yang K, Huo S, Wang X F, Ma Q, Brudvig G W, Batista V S, Liang Y, Feng Z, Wang H . Nat. Commun., 2018,9:415. https://www.ncbi.nlm.nih.gov/pubmed/29379087

doi: 10.1038/s41467-018-02819-7     URL     pmid: 29379087
[44]
Wu J, Ma S, Sun J, Gold J I, Tiwary C S, Kim B, Zhu L, Chopra N, Odeh I N, Vajtai R . Nat. Commun., 2016,7:13869. https://www.ncbi.nlm.nih.gov/pubmed/27958290

doi: 10.1038/ncomms13869     URL     pmid: 27958290
[45]
Kaneco S, Ueno Y, Katsumata H, Suzuki T, Ohta K . Chem. Eng. J., 2006,119:107.
[46]
Ohya S, Kaneco S, Katsumata H, Suzuki T, Ohta K . Catal. Today, 2009,148:329.
[47]
Kudo A, Nakagawa S, Tsuneta A, Sakata T . J. Electrochem. Soc., 1993,140:1541.
[48]
Chu D, Qin G, Yuan X, Xu M, Zheng P, Lu J . ChemSusChem, 2008,1:205. https://www.ncbi.nlm.nih.gov/pubmed/18605207

doi: 10.1002/cssc.200700052     URL     pmid: 18605207
[49]
Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K . Bull. Chem. Soc. Jpn., 1990,64:1959.
[50]
Gattrell M, Gupta N, Co A . J. Electroanal. Chem., 2006,594:1.
[51]
Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K . Electrochimica. Acta, 2005,50:54.
[52]
Xie J F, Huang Y X, Li W W, Song X N, Xiong L, Yu H Q . Electrochimi. Acta, 2014,139:137.
[53]
Chen C, Handoko A, Wan J, Ma L, Ren D, Yeo B . Catal. Sci. Technol., 2014,5:161.
[54]
Kim D, Resasco J, Yu Y, Asiri A M, Yang P . Nat. Commun., 2014,5:4948. https://www.ncbi.nlm.nih.gov/pubmed/25208828

doi: 10.1038/ncomms5948     URL     pmid: 25208828
[55]
Ma M, Djanashvili K, Smith W A . Angew. Chem. Int. Ed., 2016,55:6680. https://www.ncbi.nlm.nih.gov/pubmed/27098996

doi: 10.1002/anie.201601282     URL     pmid: 27098996
[56]
Wuttig A, Surendranath Y . ACS Catal., 2015,5:4479.
[57]
Weng Z, Zhang X, Wu Y, Huo S, Jiang J, Liu W, He G, Liang Y, Wang H . Angew. Chem. Int. Ed., 2017,56:13135. https://www.ncbi.nlm.nih.gov/pubmed/28805993

doi: 10.1002/anie.201707478     URL     pmid: 28805993
[58]
DinhC T, Burdyny T, Kibria M G, Seifitokaldani A, Gabardo M C, Arquer G P F, Kiani A, Edwards P J, Luna D P, Bushuyev S O, Zou C, Quintero-Berm-dez R, Pang Y, Sinton D, Sargent H E . Science, 2018,360:783. https://www.ncbi.nlm.nih.gov/pubmed/29773749

doi: 10.1126/science.aas9100     URL     pmid: 29773749
[59]
Freund H J, Roberts M W . Sur. Sci. Rep., 1996,25:225.
[60]
Hori Y, Takahashi I, Osamu K A, Hoshi N . J. Phys. Chem. B, 2014,106:15.
[61]
Schouten K J P, Qin Z, Gallent E P, Koper M T M . J. Am. Chem. Soc., 2012,134:9864. https://www.ncbi.nlm.nih.gov/pubmed/22670713

doi: 10.1021/ja302668n     URL     pmid: 22670713
[62]
Schouten K, Kwon Y, Ham C, Qin Z, Koper M T . Chem. Sci., 2011,2:108
[63]
Verdaguer-Casadevall A, Li C W, Johansson T P, Scott S B, McKeown J T, Kumar M, Stephens I E, Kanan M W, Chorkendorff I . J. Am. Chem. Soc., 2015,137:9808. https://www.ncbi.nlm.nih.gov/pubmed/26196863

doi: 10.1021/jacs.5b06227     URL     pmid: 26196863
[64]
Li C W, Ciston J, Kanan M W . Nature, 2014,508:504. https://www.ncbi.nlm.nih.gov/pubmed/24717429

doi: 10.1038/nature13249     URL     pmid: 24717429
[65]
Lee S, Lee J . ChemSusChem, 2016,9:333. https://www.ncbi.nlm.nih.gov/pubmed/26610065

doi: 10.1002/cssc.201501112     URL     pmid: 26610065
[66]
Shibata H, Moulijn J A, Mul G . Catal. Lett., 2008,123:186.
[67]
Murata A, Hori Y . Bull. Chem. Soc. Jpn., 2006,64:123.
[68]
Yano H, Tanaka T, Nakayama M, Ogura K . J. Electroanal. Chem., 2004,565:287.
[69]
Kas R, Kortlever R, Yılmaz H, Koper M T M, Mul G . ChemElectroChem, 2015,2:354.
[70]
Naitoh A, Ohta K, Mizuno T, Yoshida H, Sakai M, Noda H . Electrochimi. Acta, 1993,38, 2177.
[71]
Hori Y, Kikuchi K, Murata A, Suzuki S . Chem. Lett., 1986,17:897.
[72]
Varela A S, Kroschel M, Reier T, Strasser P . Catal. Today, 2016,260:8.
[73]
Li Y, Wei X, Zhu B, Wang H, Tang Y, Sum T C, Chen X . Nanoscale, 2016,8:11284. https://www.ncbi.nlm.nih.gov/pubmed/27189633

doi: 10.1039/c6nr02430k     URL     pmid: 27189633
[74]
Li Y, Wang R, Li H, Wei X, Feng J, Liu K, Dang Y, Zhou A . J. Phys. Chem. C, 2015,119:20283.
[75]
Li Y, Wei X, Yan X, Cai J, Zhou A, Yang M, Liu K . Phys. Chem. Chem. Phys., 2016,18:10255. https://www.ncbi.nlm.nih.gov/pubmed/27022001

doi: 10.1039/c6cp00353b     URL     pmid: 27022001
[76]
Shi Y, Li Y, Wei X, Feng J, Li H, Zhou W . J. Electron. Mater., 2017,46:6878.
[77]
Li Y, Feng J, Li H, Wei X, Wang R, Zhou A . Int. J. Hydrogen Energ., 2016,41:4096.
[78]
Li Y, Wei X, Li H, Wang R, Feng J, Yun H, Zhou A . RSC Adv., 2015,5:14074.
[79]
Chang X, Wang T, Gong J . Energ. Environ. Sci., 2016,9:7.
[80]
Royer M . Compt. Rend, 1870,70:731.
[1] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[7] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[8] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[9] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[10] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[11] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[12] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.