化学进展 2018, Vol. 30 Issue (11): 1722-1733 DOI: 10.7536/PC171112 前一篇   后一篇

• 综述 •


姚温浩1, 于飞1,2*, 马杰3   

  1. 1. 上海应用技术大学化学与环境工程学院 上海 201418;
    2. 上海海洋大学海洋生态与环境学院 上海 201306;
    3. 同济大学上海污染控制与生态安全研究院 上海 200092
  • 收稿日期:2017-11-04 修回日期:2018-07-04 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 于飞,e-mail:fyu@vip.163.com E-mail:fyu@vip.163.com
  • 基金资助:

Preparation of Alginate Composite Gel and Its Application in Water Treatment

Wenhao Yao1, Fei Yu1,2*, Jie Ma3   

  1. 1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
    2. College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China;
    3. Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
  • Received:2017-11-04 Revised:2018-07-04 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education, China(No. YRWEF201606).
Sodium alginate(SA) which is a natural polysaccharide has attracted wide attention not only due to the simple gelatinization conditions and easy operation process, but also its good biodegradability and excellent biocompatibility. Apart from that, compositing with other chemical substances improves the properties of SA gels. They will show a promising application prospect in water treatment area in the future. The article reviews the research advance of the structure characteristics, the physical-chemical and adsorption properties of SA composite gels. Besides, the classifications and preparation methods of SA composite gels are summarized and concluded systematically. In addition, we further analyze and compare the research problems and progress of SA composite gels used as adsorbents in water treatment. At last, we point out the further research direction and applications of SA composite gels in order to provide some suggestion to solve water pollution problems.
1 Introduction
2 The structure, physicochemical and adsorption properties of alginate
2.1 The structure of alginate
2.2 The physicochemical properties of alginate
2.3 The adsorption properties of alginate
3 Classification of alginate composite gel
3.1 Alginate-carbon materials
3.2 Alginate-oxide composite gel
3.3 Alginate-organic compound gel
3.4 Other alginate compound gel
4 Preparation of alginate-composite gel
4.1 Grafting method
4.2 Sol-gel method
4.3 Packaging method
4.4 One step synthesis method
5 Application of alginate compound gel adsorbent in water treatment
5.1 Heavy metal ions
5.2 Rare earth
5.3 Dye
5.4 Other pollutants
6 Conclusion


[1] Wang Z, Huang Y, Wang M, Wu G, Geng T, Zhao Y, Wu A. J. Environ. Chem. Eng., 2016, 4:3185.
[2] Cataldo S, Gianguzza A, Merli M, Muratore N, Piazzese D, Liveri M L T. Journal of Colloid and Interface Science, 2014, 434:77.
[3] Jiao L, Qi P, Liu Y, Wang B, Shan L. Journal of Nanomaterials, 2015, 16:10.
[4] Chen L, Zhang K S, He J Y, Cai X G, Xu W H, Liu J H. RSC Adv., 2016, 6:36296.
[5] Kwiatkowska-Marks S, Wojcik M. Separation Science and Technology, 2014, 49:2204.
[6] Shim J, Lim J M, Shea P J, Oh B T. Journal of Hazardous Materials, 2014, 272:129.
[7] Chiew C S C, Poh P E, Pasbakhsh P, Tey B T, Yeoh H K, Chan E S. Applied Clay Science, 2014, 101:444.
[8] Gurikov P, Raman S P, Weinrich D, Fricke M, Smirnova I. RSC Adv., 2015, 5:7812.
[9] Chiew C S C, Yeoh H K, Pasbakhsh P, Poh P E, Tey B T, Chan E S. Polymer Degradation and Stability, 2016, 123:146.
[10] Wang F, Zhao J, Pan F, Zhou H, Yang X, Li W, Liu H. Ind. Eng. Chem. Res., 2013, 52:3453.
[11] Wang F, Zhao J, Li W, Zhou H, Yang X, Sui N, Liu H. Waste and Biomass Valorization, 2013, 4:665.
[12] Wang F, Zhao J, Wei X, Huo F, Li W, Hu Q, Liu H. Journal of Chemical Technology and Biotechnology, 2014, 89:969.
[13] Pandi K, Viswanathan N. Journal of Applied Polymer Science, 2015, 132:41937.
[14] Uzasci S, Tezcan F, Erim F B. International Journal of Environmental Science and Technology, 2014, 11:1861.
[15] Bertagnolli C, Grishin A, Vincent T, Guibal E. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2017, 52:359.
[16] Deze E G, Papageorgiou S K, Favvas E P, Katsaros F K. Chem. Eng. J., 2012, 209:537.
[17] Liu L, Wan Y, Xie Y, Zhai R, Zhang B, Liu J. Chem. Eng. J., 2012, 187:210.
[18] Inal M, Erduran N. Polymer Bulletin, 2015, 72:1735.
[19] Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4:10885.
[20] Yalcin S, Apak R, Boz I. Korean Journal of Chemical Engineering, 2015, 32:2116.
[21] Roosen J, Pype J, Binnemans K, Mullens S. Ind. Eng. Chem. Res., 2015, 54:12836.
[22] Xu S, Wang Z, Gao Y, Zhang S, Wu K. PLoS One, 2015, 10:1.
[23] Bertagnolli C, Grishin A, Vincent T, Guibal E. Ind. Eng. Chem. Res., 2016, 55:2461.
[24] Sarkar K, Ansari Z, Sen K. Int. J. Biol. Macromol., 2016, 91:165.
[25] Ren H X, Gao Z M, Wu D J, Jiang J H, Sun Y M, Luo C W. Carbohydrate Polymers, 2016, 137:402.
[26] Vicini S, Castellano M, Mauri M, Marsano E. Carbohydrate Polymers, 2015, 134:767.
[27] Gad Y H, Aly R O, Abdel-Aal S E. Journal of Applied Polymer Science, 2011, 120:1899.
[28] Gopalakannan V, Viswanathan N. Int. J. Biol. Macromol., 2016, 83:450.
[29] Liu J Q, Ying X G, Wang H X, Li X, Zhang W Y. Journal of Applied Polymer Science, 2016, 133:43617.
[30] Lopez B R, Hernandez J P, Bashan Y, de-Bashan L E. Journal of Microbiological Methods, 2017, 135:96.
[31] Han Y, Li Y, Zeng Q, Li H, Peng J, Xu Y, Chang J. J. Mater. Chem. B, 2017, 5:3315.
[32] Aguero L, Zaldivar-Silva D, Pena L, Dias M L. Carbohydrate Polymers, 2017, 168:32.
[33] Raafat A I, Ali A E H. Polymer Bulletin, 2017, 74:2045.
[34] Sen F, Uzunsoy I, Basturk E, Kahraman M V. Carbohydrate Polymers, 2017, 170:264.
[35] Roosen J, Mullens S, Binnemans K. Ind. Eng. Chem. Res., 2017, 56:8677.
[36] Zhao J C, Ding X G, Meng C, Ren C R, Fu H Q, Yang H. Progress in Nuclear Energy, 2015, 85:713.
[37] Wu D, Gao Y, Li W, Zheng X, Chen Y, Wang Q. Acs Sustainable Chemistry & Engineering, 2016, 4:6732.
[38] Li Z, Yao Y, Wei G, Jiang W, Wang Y, Zhang L. Polymer Engineering and Science, 2016, 56:1382.
[39] Hosseini S, Babadi F E, Soltani S M, Aroua M K, Babamohammadi S, Moghadam A M. Process Safety and Environmental Protection, 2017, 109:387.
[40] Feng J, Ding H, Yang G, Wang R, Li S, Liao J, Li Z, Chen D. Journal of Colloid and Interface Science, 2017, 508:387.
[41] Feng Y, Wang Y, Wang Y, Zhang X F, Yao J. Journal of Colloid and Interface Science, 2018, 512:7.
[42] Tally M, Atassi Y. Polymer Bulletin, 2016, 73:3183.
[43] Wu Y, Qi H, Shi C, Ma R, Liu S, Huang Z. RSC Adv., 2017, 7:31549.
[44] Jiang X, Xiang N, Zhang H, Sun Y, Lin Z, Hou L. Carbohydrate Polymers, 2018, 186:377.
[45] Hosseinzadeh H, Abdi K. J. Inorg. Organomet. Polym. Mater., 2017, 27:1595.
[46] Lv X, Zhang Y, Fu W, Cao J, Zhang J, Ma H, Jiang G. Journal of Colloid and Interface Science, 2017, 506:633.
[47] Xu S X, Wang Z W, Gao Y Q, Zhang S M, Wu K. PLoS One, 2015, 10:12.
[48] Solpan D, Torun M, Gueven G. Journal of Applied Polymer Science, 2008, 108:3787.
[49] Platero E, Emilia Fernandez M, Ricardo Bonelli P, Lea Cukierman A. Journal of Colloid and Interface Science, 2017, 491:1.
[50] Vipin A K, Ling S, Fugetsu B. Carbohydrate Polymers, 2014, 111:477.
[51] Long J J, Wang Y, Xu Y N, Li X. RSC Adv., 2015, 5:10878.
[52] Cataldo S, Gianguzza A, Milea D, Muratore N, Pettignano A. Int. J. Biol. Macromol., 2016, 92:769.
[53] Li C, Lu J, Li S, Tong Y, Ye B. Materials, 2017, 10:84.
[54] Sun L, Fugetsu B. Chem. Eng. J., 2014, 240:565.
[55] Zhang H, Pang X, Qi Y. RSC Adv., 2015, 5:89073.
[56] Liu L, Barford J, Yeung King L. Journal of Environmental Sciences, 2009, 21:700.
[57] Jiao L, Qi P S, Liu Y Z, Wang B, Shan L L. Journal of Nanomaterials, 2015, 16:257.
[58] Wong E T, Chan K H, Idris A. Chem. Eng. J., 2015, 268:311.
[59] Obeid L, El Kolli N, Dali N, Talbot D, Abramson S, Welschbillig M, Cabuil V, Bee A. Journal of Colloid and Interface Science, 2014, 432:182.
[60] Jeon C, Nah I W, Hwang K Y. Hydrometallurgy, 2007, 86:140.
[61] Ashiuchi M, Misono H. Applied Microbiology and Biotechnology, 2002, 59:9.
[62] Salisu A, Sanagi M M, Abu Naim A, Abd Karim K J, Ibrahim W A W, Abdulganiyu U. Polymer Bulletin, 2016, 73:519.
[63] (a)Chassary P, Vincent T, Guibal E. Reactive & Functional Polymers, 2004, 60:137; (b)Ghoul M, Bacquet M, Morcellet M. Water Research, 2003, 37:729.
[64] Li Y, Xia B, Zhao Q, Liu F, Zhang P, Du Q, Wang D, Li D, Wang Z, Xia Y. Journal of Environmental Sciences, 2011, 23:404.
[65] Barreca S, Orecchio S, Pace A. Applied Clay Science, 2014, 99:220.
[66] Cavallaro G, Gianguzza A, Lazzara G, Milioto S, Piazzese D. Applied Clay Science, 2013, 72:132.
[67] Pezeshkpour S, Abdullah A Z, Salamatinia B, Horri B A. Ceramics International, 2017, 43:7123.
[68] Fan J, Shi Z, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1:7433.
[69] Gharekhani H, Olad A, Mirmohseni A, Bybordi A. Carbohydr. Polym., 2017, 168:1.
[70] Wang W, Kang Y, Wang A. Journal of Polymer Research, 2013, 20:1.
[71] Kimling M C, Caruso R A. Journal of Materials Chemistry, 2012, 22:4073.
[72] Zhang S, Xu F, Wang Y, Zhang W, Peng X, Pepe F. Chem. Eng. J., 2013, 234:33.
[73] Tang Z, Peng S, Hu S, Hong S. Journal of Colloid and Interface Science, 2017, 495:191.
[74] Li X, Qi Y, Li Y, Zhang Y, He X, Wang Y. Bioresource Technology, 2013, 142:611.
[75] Badawy M E I, Taktak N E M, Awad O M, Elfiki S A, Abou El-Ela N E. Journal of Macromolecular Science Part B-Physics, 2017, 56:359.
[76] Wang F, Lu X W, Li X Y. Journal of Hazardous Materials, 2016, 308:75.
[77] Chang Y H, Huang C F, Hsu W J, Chang F C. Journal of Applied Polymer Science, 2007, 104:2896.
[78] Zhu L, Zhang L, Tang Y, Kou X. Polymer-Plastics Technology and Engineering, 2014, 53:74.
[79] Park H G, Kim T W, Chae M Y, Yoo I K. Process Biochemistry, 2007, 42:1371.
[80] Zhang L, Wu D B, Zhu B H, Wang L, Fan L Y. Chinese Journal of Analytical Chemistry, 2010, 38:1732.
[81] Zhang L, Wu D, Zhu B, Yang Y, Wang L. Journal of Chemical and Engineering Data, 2011, 56:2280.
[82] Wu D, Zhang L, Wang L, Zhu B, Fan L. Journal of Chemical Technology and Biotechnology, 2011, 86:345.
[83] Rashidzadeh A, Olad A, Salari D. Fibers and Polymers, 2015, 16:354.
[84] Parekh P, Parmar A, Chavda S, Bahadur P. Journal of Dispersion Science and Technology, 2011, 32:1377.
[85] Karadag E, Kasim Z D, Kundakci S, Uzum O B. Fibers and Polymers, 2017, 18:9.
[86] Li G, Du Y, Tao Y, Deng H, Luo X, Yang J. Carbohydrate Polymers, 2010, 82:706.
[87] Mahmoodi N M, Hayati B, Arami M, Bahrami H. Desalination, 2011, 275:93.
[88] Enayatzamir K, Alikhani H A, Yakhchali B, Tabandeh F, Rodriguez-Couto S. Environmental Science and Pollution Research, 2010, 17:145.
[89] Lezehari M, Basly J P, Baudu M, Bouras O. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2010, 366:88.
[90] Fei Y, Yong L, Sheng H, Jie M. Journal of Colloid and Interface Science, 2016, 484:196.
[91] Escudero C, Fiol N, Villaescusa I, Bollinger J C. Journal of Hazardous Materials, 2009, 164:533.
[1] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[2] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[3] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[4] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[5] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[6] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[7] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[8] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[9] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[10] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[11] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[12] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[13] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[14] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.
[15] 赵凤阳, 秘一芳, 安全福, 高从堦. 荷正电聚乙烯亚胺纳滤膜的制备与应用[J]. 化学进展, 2016, 28(4): 541-551.