English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 601-615 DOI: 10.7536/PC171134 前一篇   后一篇

• 综述 •

手性杯芳烃及其超分子手性

罗钧2, 郑炎松1*   

  1. 1. 华中科技大学 化学与化工学院 能量转换与存储材料化学教育部重点实验室 武汉 430074;
    2. 华中科技大学 药学院 武汉 430030
  • 收稿日期:2017-11-30 修回日期:2018-01-18 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 郑炎松e-mail:zyansong@hotmail.com E-mail:zyansong@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.21072067,21673089)和中央高校基本科研业务费(No.2015ZDTD055)资助

Chiral Calixarenes and Their Supramolecular Chirality

Jun Luo2, YanSong Zheng1*   

  1. 1. Key Laboratory of Energy Transformation and Storage Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
  • Received:2017-11-30 Revised:2018-01-18 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21072067, 21673089) and the Fundamental Research Funds for the Central Universities (No.2015ZDTD055).
杯芳烃是由苯酚单元通过亚甲基连接而成的空腔型分子,具有衍生位点多,构象丰富等特点,被称为第三代主体分子。在分子层次,依手性因素的结构特点不同,可将手性杯芳烃分为具有手性亚单元的杯芳烃、固有手性杯芳烃和桥手性杯芳烃。在超分子层次,杯芳烃自身或杯芳烃与其他分子或离子在溶液中、晶态中或二维表面可通过非共价键力形成多种拓扑结构的纳米手性聚集体。研究手性杯芳烃和基于杯芳烃的超分子手性组装体的合成、结构和性能,不仅在理解手性起源、手性结构等方面具有理论意义,而且有望获得以分子识别为基础的手性传感器、手性催化剂、手性分离材料、手性载体和手性纳米材料。本文综述近十年来有代表性的分子手性杯芳烃和以杯芳烃为组分的超分子手性聚集体的设计、合成、结构和功能。着重展示杯芳烃骨架在形成新颖分子手性和超分子手性上的优势,以及杯芳烃单元在实现特定功能如手性识别时发挥的作用。相信随着杯芳烃合成技术和杯芳烃超分子设计的发展,必将进一步发挥杯芳烃的结构优势,涌现出更多性能优异的手性杯芳烃功能分子和超分子手性杯芳烃功能材料。
Calixarenes are concave molecules consisting of phenol units and linking methylenes. Due to facile modification and controllable conformations, calixarenes are regarded as the third generation of host molecules. At molecular level, chiral calixarenes can be classified into calixarenes with chiral subunits, inherently chiral calixarenes, and bridging chiral calixarenes, according to the structural feature of the chirality elements. At supramolecular level, calixarenes can self-assemble or assemble with other molecules or ions into nanoscale aggregates of diverse topologies in solution, solid state, and two-dimensional surface, through non-covalent bonds. The study on chiral calixarenes and their supramolecular chirality not only has theoretical significance in chiral structures, origin of chirality, and so on, but also shows great potential in chiral sensors, chiral catalysts, chiral separation materials, chiral vehicles, and chiral nano-materials etc. This review focuses on the progress in the design, synthesis, structure, and function of representative calixarenes with molecular chirality and supramolecular chirality in the last decade. Emphasis is laid on the advantages of calixarene skeletons in forming novel molecular chirality and supramolecular chirality as well as in realizing specific and novel functions. It is expected that more exceptional chiral calixarene molecules and chiral calixarene supramolecular materials will be obtained as advancement of synthetic technology and supramolecular designs in calixarene studies.
Contents
1 Introduction
2 Calixarenes with chiral subunits
2.1 As solvating reagents
2.2 As gelators
2.3 As asymmetric catalysts
3 Inherently chiral calixarenes
3.1 Upper rim/Lower rim-substituted
3.2 Meta-substituted
3.3 Calixarenes containing chiral methylene bridge carbon
4 Calixarene supramolecular chirality
4.1 Supramolecular chirality driven by acid-base reaction
4.2 Supramolecular chirality driven by electrostatic attraction
4.3 Supramolecular chirality driven by hydrogen bonding
4.4 Supramolecular chirality driven by coordination
4.5 Supramolecular chirality driven by van der Waals interaction
4.6 Supramolecular chirality driven by π-π interaction
4.7 Supramolecular chirality driven by inclusion
5 Conclusion and outlook

中图分类号: 

()
[1] Gutsche C. Calixarenes:An introduction. Cambridge:RSC Publishing, 2008.
[2] Neri P, Sessler J L, Wang M X. Calixarenes and Beyond. Cham:Springer International Publishing, 2016.
[3] Szumna A. Chem. Soc. Rev., 2010, 39, 4274.
[4] Luo J, Zheng Y S. Curr. Org. Chem., 2012, 16:483.
[5] 罗钧(Luo J),郑企雨(Zheng Q Y),陈传峰(Chen C F),黄志镗(Huang Z T). 化学进展(Progress in Chemistry), 2006, 18(7):897.
[6] Zheng Y S, Luo J. J. Incl. Phenom. Macrocycl. Chem., 2011, 71:35.
[7] Zheng Y S, Zhang C. Org. Lett., 2004, 6:1189.
[8] Durmaz M, Yilmaz M, Sirit A.Org. Biomol. Chem., 2011, 9:571.
[9] Zhou J L, Chen X J, Zheng Y S. Chem. Commun., 2007, 5200.
[10] Zheng Y S, Ran S Y, Hu Y J, Liu X X. Chem. Commun., 2009, 1121.
[11] Nandi P, Solovyov A, Okrut A, Katz A. ACS Catal., 2014, 4:2492.
[12] Bonaccorso C, Brancatelli G, Ballistreri F P, Geremia S, Pappalardo A, Tomaselli G A, Toscano R M, Sciotto D. Dalton Trans., 2014, 43:2183.
[13] De Simone N A, Schettini R, Talotta C, Gaeta C, Izzod I, Sala D G, Neri P. Eur. J. Org. Chem., 2017, 2017(37):5649.
[14] Li Z Y, Chen Y, Zheng C Q, Yin Y, Wang L, Sun X Q. Tetrahedron, 2017, 73:78.
[15] Akceylan E, Uyanik A, Eymurd S, Sahin O, Yilmaz M. Applied Catalysis A:General, 2015, 499:205.
[16] Cao Y D, Luo J, Zheng Q Y, Chen C F, Wang M X, Huang Z T. J. Org. Chem., 2004, 69:2016.
[17] Luo J, Zheng Q Y, Chen C F, Huang Z T. Chem. Eur. J., 2005, 11:5917.
[18] Luo J, Zheng Q Y, Chen C F, Huang Z T. Tetrahedron, 2005, 61:8517.
[19] Xia Y X, Zhou H H, Shi J, Li S Z, Zhang M, Luo J, Xiang G Y. J. Incl. Phenom. Macrocycl. Chem., 2012, 74:277.
[20] Shi J, Li S Z, Xia Y X, Wang X G, Luo J, Wan Q. J. Incl. Phenom. Macrocycl. Chem., 2013, 77:327.
[21] Yang K, Li S Z, Wang Y H, Zhang W Z, Xu Z H, Zhou X Y, Zhu R X, Luo J, Wan Q. RSC Adv., 2014, 4:6517.
[22] Li S Z, Shi J, Yang K, Luo J. Tetrahedron, 2012, 68:8557.
[23] Li S Z, Yang K, Liu H B, Xia Y X, Zhu R X, Luo J, Wan Q. Tetrahedron Lett., 2013, 54:5901.
[24] Zhang W Z, Ma H, Xiang G Y, Luo J, Chung W S. Chemistry Select., 2016, 1:2486.
[25] Zhang W Z, Yang K, Li S Z, Ma H, Luo J, Wang K P, Chung W S. Eur. J. Org. Chem., 2015, 765.
[26] Ma H, Zhang W Z, Luo J, Liu J M, Xiang G Y. J. Incl. Phenom. Macrocycl. Chem., 2017, 89:91.
[27] Yakovenko A V, Boyko V I, Danylyuk O, Suwinska K, Lipkowski J, Kalchenko V I. Org. Lett., 2007, 9:1183.
[28] Shu C M, Chung W S, Wu S H, Ho Z C, Lin L G. J. Org. Chem., 1999, 64:2673.
[29] Kliachyan M A, Yesypenko O A, Pirozhenko V V, Shishkina S V, Shishkin O V, Boyko V I, Kalchenko V I. Tetrahedron, 2009, 65:7085.
[30] Wang J H, Chen Y C, Zheng Y S, Shen C H. J. Incl. Phenom. Macrocycl. Chem., 2014, 80:449.
[31] Shirakawa S, Kimura T, Murata S I, Shimizu S. J. Org. Chem., 2009, 74:1288.
[32] Shirakawa S, Shimizu S. New J. Chem., 2010, 34:1217.
[33] Ciaccia M, Tosi I, Cacciapaglia R, Casnati A, Baldini L, Di Stefano S. Org. Biomol. Chem., 2013, 11:3642.
[34] Miao R, Zheng Q Y, Chen C F, Huang Z T. J. Org. Chem., 2005, 70:7662.
[35] Miao R, Xu Z X, Huang Z T, Chen C F. Sci. China B. Chem., 2009, 52:505.
[36] Xu Z X, Zhang C, Zheng Q Y, Chen C F, Huang Z T. Org. Lett., 2007, 9:4447.
[37] Xu Z X, Zhang C, Yang Y, Chen C F, Huang Z T. Org. Lett., 2008, 10:477.
[38] Xu Z X, Li G K, Chen C F, Huang Z T. Tetrahedron, 2008, 64:8668.
[39] Herbert S A, Arnott G E. Org. Lett., 2009, 11:4986.
[40] Herbert S A, Arnott G E. Org. Lett., 2010, 12:4600.
[41] Herbert S A, Castell D C, Clayden J, Arnott G E. Org. Lett., 2013, 15:3334.
[42] Castell D C, Lesotho N, Nikolayenko V I, Arnott G E. Eur. J. Org. Chem., 2017, 2017:4328.
[43] Flidrova K, Bohm S, Dvorakova H, Eigner V, Lhotak P. Org. Lett., 2014, 16:138.
[44] Slavik P, Kohout M, Bohm S, Eigner V, Lhotak P. Chem. Commun., 2016, 52:2366.
[45] Tlusty M, Slavik P, Kohout M, Eigner V, Lhotak P. Org. Lett., 2017, 19:2933.
[46] Troisi F, Pierro T, Gaeta C, Carratu M, Neri P. Tetrahedron Lett., 2009, 50:4416.
[47] Gaeta C, Troisi F, Talotta C, Pierro T, Neri P. J. Org. Chem., 2012, 77:3634.
[48] De Rosa M, Soriente A, Concilio G, Talotta C, Gaeta C, Neri P. J. Org. Chem., 2015, 80:7295.
[49] Gopalsamuthiram V, Huang R, Wulff W D. Chem. Commun., 2010, 46:8213.
[50] An F J, Xu W Q, Zheng S, Ma S K, Li S Y, Wang R L, Liu J M. Eur. J. Org. Chem., 2016, 1012.
[51] Xu W Q, Liu W S, Yan J X, Ma S K, Guo J, Liu J M, Wang R L, Li S Y. J. Org. Chem., 2016, 81:10683.
[52] Zheng Y S, Ji A, Chen X J, Zhou J L. Chem. Commun., 2007, 32(32):3398.
[53] Fuji S, Sakurai K, Okobira T, Ohta N, Takahara A. Langmuir, 2013, 29:13666.
[54] Prins L J, De Jong F, Timmerman P, Reinhoudt D N. Nature, 2000, 408:181.
[55] Bogdan A, Bolte M, Bohmer V. Chem. Eur. J., 2008, 14:8514.
[56] Mastalerz M, Rivera H J E, Oppel I M, Dyker G. CrystEngComm., 2011, 13:3979.
[57] Martinez-Rodriguez L, Bandeira N A G, Bo C, Kleij A W. Chem. Eur. J., 2015, 21:7144.
[58] Sakamoto S, Fujii S, Yoshida K, Sakurai K. Langmuir, 2016, 32:12434.
[59] D'Urso A, Marino N, Gaeta M, Rizzo M S, Cristaldi D A, Fragala M E, Pappalardo S, Gattuso G, Notti A, Parisi M F, Pisagatti I, Purrello R. New J. Chem., 2017, 41:8078.
[60] Talotta C, De Simone N A, Gaeta C, Neri P. Org. Lett., 2015, 17:1006.
[61] Sun R, Xue C, Ma X D, Gao M, Tian H, Li Q. J. Am. Chem. Soc., 2013, 135:5990.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[11] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[12] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[13] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[14] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
阅读次数
全文


摘要

手性杯芳烃及其超分子手性