English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 578-585 DOI: 10.7536/PC171131 前一篇   后一篇

• 综述 •

灯台生物碱Strictamine的全合成

刘小宇1, 肖涛2, 秦勇1*   

  1. 1. 四川大学华西药学院 成都 610041;
    2. 重庆大学药学院 重庆 401331
  • 收稿日期:2017-11-30 修回日期:2017-12-29 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 秦勇e-mail:yongqin@scu.edu.cn E-mail:yongqin@scu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21732005)资助

Total Synthesis of the Akuammiline Alkaloid Strictamine

Xiaoyu Liu1, Tao Xiao2, Yong Qin1*   

  1. 1. West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
    2. School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
  • Received:2017-11-30 Revised:2017-12-29 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21732005).
灯台生物碱具有复杂多样的结构和显著的生理活性,针对此类分子的化学合成引起了有机化学界的广泛关注。其中的代表性化合物strictamine在结构上具有笼状的methanoquinolizidine核心骨架和C7位全碳季碳手性中心,在合成上具有重要挑战。关于该化合物的全合成已有超过40年的研究历史,而直到最近两年才取得突破性的进展。本文针对2016年以来关于strictamine的三条全合成和四条形式合成路线进行简要介绍,主要剖析了各条合成路线中的关键策略和反应,并对进一步的研究进行了展望。
Due to their complex and diverse structures and significant bioactivities, the chemical synthesis of the akuammiline alkaloids has been highly pursued in the chemical community. Strictamine, as one of the representative members in this natural product family, is structurally featured by a cage like methanoquinolizidine framework and an all-carbon quaternary stereogenic center at C7, posing a great challenge in synthesis. Pursuit in the total synthesis of strictamine has a history of over four decades; however, the breakthroughs came until the recent two years. This review briefly summarizes the three total syntheses and four formal syntheses of strictamine that have been reported since 2016, by highlighting the key strategies and reactions employed in each of the synthesis. Moreover, perspectives in this research field have also been suggested at the end of this review.
Contents
1 Introduction
2 Total synthesis and formal total synthesis of strictamine
2.1 Asymmetric total synthesis of (+)-strictamine by the Garg group
2.2 Total synthesis of (±)-strictamine by the Zhu group
2.3 Total synthesis of (±)-strictamine by the Zu group
2.4 Formal synthesis of (±)-strictamine by the Fujii/Ohno group
2.5 Formal synthesis of (+)-strictamine by the Snyder group
2.6 Formal synthesis of (±)-strictamine by the Gaich group
2.7 Formal synthesis of (+)-strictamine by the Qin group
3 Conclusion and outlook

中图分类号: 

()
[1] For selected reviews of akuammiline alkaloids, see:(a) Ramírez A, García-Rubio S. Curr. Med. Chem., 2003, 10:1891.;
(b) Adams G, Smith A B. The Alkaloids:Chemistry and Biology (Ed. Knolker H J). New York:Elsevier, 2016, 76:171.
[2] (a)李朝明(Li C M), 张宪民(Zhang X M), 周韵丽(Zhou Y L), 黄丽瑛(Huang L Y), 陶国达(Tao G D). 药学学报(Acta Pharm. Sin.), 1993, 28:512.;
(b)杜国顺(Du G S), 尚建华(Shang J H), 蔡祥海(Cai X H), 罗晓东(Luo X D). 云南植物研究(Acta Bot. Yunnanica), 2007, 29:366.
[3] Baliga M S,Meera S, Mathai B, Rai M P, Pawar V. Chin. J. Integr. Med., 2012, DOI:10.1007/s11655-011-0947-0.
[4] Henry T A, Sharp T M. J. Chem. Soc., 1927, 1950.
[5] Henry T A. J. Chem. Soc., 1932, 2759.
[6] Olivier L, Lévy J, Le Men J, Janot M M, Budzikiewicz H, Djerassi C. Bull. Soc. Chim. France, 1965, 868.
[7] For selected biological activity, see:(a) Dutta S C, Bhattacharya S K, Ray A B. Planta Med., 1976, 30:86.;
(b) Bhattacharya S K, Dutta S C, Ray A B, Guha S R. Indian J. Exp. Biol., 1979, 17:598.;
(c) Hugel G, Royer D, Men-Olivier L L, Richard B, Jacquier M J, Levy J. J. Org. Chem., 1997, 62:578.;
(d) Leewanich P, Tohda M, Matsumoto K, Subhadhirasakul S, Takayama H, Aimi N, Watanabe H. Eur. J. Pharmacol., 1997, 332:321.;
(e) Arai H, Hirasawa Y, Rahman A, Kusumawati I, Zaini N C, Sato S, Aoyama C, Takeo J, Morita H. Bioorg. Med. Chem., 2010, 18:2152.;
(f) Zaima K, Koga I, Iwasawa N, Hosoya T, Hirasawa Y, Kaneda T, Ismail I S, Lajis N H, Morita H. J. Nat. Med., 2013, 67:9.;
(g) Zhang L, Zhang C J, Zhang D B, Wen J, Zhao X W, Li Y, Gao K. Tetrahedron Lett., 2014, 55:1815.
[8] (a) Eckermann R, Gaich T. Synthesis, 2013, 2813.;
(b) Smith J M, Moreno J, Boal B W, Garg N K. Angew. Chem. Int. Ed., 2015, 54:400.
[9] Zhang M, Huang X P, Shen L Q, Qin Y. J. Am. Chem. Soc., 2009, 131:6013.
[10] (a) Zi W W, Zuo Z W, Ma D W. Acc. Chem. Res., 2015, 48:702.;
(b) Susick R B, Morrill L A, Picazo E, Garg N K. Synlett, 2017, 1.; During the preparation of this review, a related highlight article was published, see:
(c) Wang C, Zhang S J, Wang Y, Huang S H, Hong R. Org. Chem. Front., 2018, 5:447.
[11] Schnoes H K, Biemann K, Mokry J, Kompis I, Chatterjee A, Ganguli G. J. Org. Chem., 1966, 31:1641.
[12] Hou Y Y, Cao X L, Wang L Q, Cheng B F, Dong L Y, Luo X D, Bai G, Gao W Y. J. Chromatogr. B, 2012, 908:98.
[13] (a) Dolby L J, Esfandiari Z. J. Org. Chem., 1972, 37:43.;
(b) Dolby L J, Nelson S J. J. Org. Chem., 1973, 38:2882.
[14] (a) Moreno J, Picazo E, Morrill L A, Smith J M, Garg N K. J. Am. Chem. Soc., 2016, 138:1162.;
(b) Ren W W, Wang Q, Zhu J P. Angew. Chem. Int. Ed., 2016, 55:3500.;
(c) Xie X N, Wei B, Li G, Zu L S. Org. Lett., 2017, 19:5430.
[15] (a) Nishiyama D, Ohara A, Chiba H, Kumagai H, Oishi S, Fujii N, Ohno H. Org. Lett., 2016, 18:1670.;
(b) Smith M W, Zhou Z, Gao A X, Shimbayashi T, Snyder S A. Org. Lett., 2017, 19:1004.;
(c) Eckermann R, Breunig M, Gaich T. Chem. Commun., 2016, 52:11363.;
(d) Eckermann R, Breunig M, Gaich T. Chem. Eur. J., 2017, 23:3938.;
(e) Xiao T, Chen Z T, Deng L F, Zhang D, Liu X Y, Song H, Qin Y. Chem. Commun., 2017, 53:12665.
[16] (a) Lu Z Y, Li Y, Deng J, Li A. Nat. Chem., 2013, 5:679.;
(b) Xiong X C, Li Y, Lu Z Y, Wan M, Deng J, Wu S H, Shao H W, Li A. Chem. Commun., 2014, 50:5294.
[17] For the use of the Fischer indolization reaction in akuammiline alkaloid synthesis, see:(a) Zu L S, Boal B W, Garg N K. J. Am. Chem. Soc., 2011, 133:8877.;
(b) Smith J M, Moreno J, Boal B W, Garg N K. J. Am.Chem. Soc., 2014, 136:4504.;
(c) Smith J M, Moreno J, Boal B W, Garg N K. J. Org. Chem., 2015, 80:8954.
[18] For a review on catalytic asymmetric allylic alkylation employing heteroatom nucleophiles, see:Trost B M, Zhang T, Sieber J D. Chem. Sci., 2010, 1:427.
[19] (a) Solé D, Cancho Y, Llebaria A, Moréto J M, Delgado A. J. Am. Chem. Soc., 1994, 116:12133.;
(b) Bonjoch J, Solé D, García-Rubio S, Bosch J. J. Am. Chem. Soc., 1997, 119:7230.;
(c) Yu S, Mathias O, Cook J M. J. Am. Chem. Soc., 2000, 122:7827.;
(d) Yu F M, Cheng B, Zhai H B. Org. Lett., 2011, 13:5782.;
(e) Teng M X, Zi W W, Ma D W. Angew. Chem. Int. Ed., 2014, 53:1814.
[20] (a) Solé D, Bosch J, Bonjoch J. Tetrahedron, 1996, 52:4013.;
(b) Ren W W, Wang Q, Zhu J P. Angew. Chem. Int. Ed., 2014, 53:1818.
[21] (a) Yu Y Y, Li G, Jiang L, Zu L S. Angew. Chem. Int. Ed., 2015, 54:12627.;
(b) Yu Y Y, Li G, Zu L S. Synlett, 2016, 27:1303.;
(c) Li G, Xie X N, Zu L S. Angew. Chem. Int. Ed., 2016, 55:10483.
[22] Sole D, Cancho Y, Llebaria A, Moreto J M, Delgado A. J. Am. Chem. Soc., 1994, 116:12133.
[23] Hashmi A S K, Graf K, Ackermann M, Rominger F. ChemCatChem, 2013, 5:1200.
[24] For Cu-based precedent, see:(a) Fandrick D R, Fandrick K R, Reeves J T, Tan Z, Tang W, Capacci A G, Rodriguez S, Song J J, Lee H, Yee N K, Senanayake C H. J. Am. Chem. Soc., 2010, 132:7600.;
(b) Vieira E M, Haeffner F, Snapper M L, Hoveyda A H. Angew. Chem. Int. Ed., 2012, 51:6618.;
(c) Wei X F, Shimizu Y, Kanai M. ACS Cent. Sci., 2016, 2:21.
[25] For a Au-catalyzed process that requires silyl-indole protection, see:(a) Xu W Q, Wang W, Wang X. Angew. Chem. Int. Ed., 2015, 54:9546.; For related gold-catalyzed reactions, see:
(b) Liu Y X, Xu W Q, Wang X. Org. Lett., 2010, 12:1448.;
(c) Zhang L, Wang Y, Yao Z J, Wang S, Yu X Z. J. Am. Chem. Soc., 2015, 137:13290.
[26] Vanecko J A, Wan H, West F G. Tetrahedron, 2006, 62:1043.
[27] (a) Fang Y W, Li C Z. J. Org. Chem., 2006, 71:6427.;
(b) Wang Y, Kong C, Du Y, Song H, Zhang D, Qin Y. Org. Biomol. Chem., 2012, 10:2793.
[28] Qin W F, Xiao T, Zhang D, Deng L F, Wang Y, Qin Y. Chem. Commun., 2015, 51:16143.
[1] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[2] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[3] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[4] 李武, 汪俊洁, 马大为. 对映-贝壳杉烷型二萜的合成[J]. 化学进展, 2019, 31(11): 1460-1471.
[5] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[6] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[7] 武金丹, 巨勇. 基于天然产物骨架的分子离子识别体系[J]. 化学进展, 2013, 25(11): 1888-1897.
[8] 郜嵩, Sumit Basu, 杨广义, Arijita Deb, 胡明. 天然产物用于癌症化学预防的口服生物利用度问题[J]. 化学进展, 2013, 25(09): 1553-1574.
[9] 童星, 肖小华, 邓建朝, 王家玥, 李攻科. 低温微波技术在化学研究中的应用[J]. 化学进展, 2010, 22(12): 2462-2468.
[10] 田伟生 史勇. 资源化学研究进展*[J]. 化学进展, 2010, 22(04): 537-556.
[11] 戈惠明,谭仁祥. 共生菌——新活性天然产物的重要来源*[J]. 化学进展, 2009, 21(01): 30-46.
[12] 杨震. 活性天然产物和结构多样性类天然产物的合成[J]. 化学进展, 2009, 21(01): 47-54.
[13] 胡金锋,Gary R.Eldridge,余亦华,Mark O’Neil-Johnson. 高通量天然产物化学和毛细管核磁共振探头技术的应用*[J]. 化学进展, 2008, 20(04): 429-440.
[14] 房学迅,扬金刚,史秀娟. 来源于天然产物的基质金属蛋白酶(MMPs)抑制剂[J]. 化学进展, 2007, 19(012): 1991-1998.
[15]

伍贻康,吴毓林

.

有机合成的新世纪――-有机合成近年进展鉴赏

[J]. 化学进展, 2007, 19(01): 6-34.
阅读次数
全文


摘要

灯台生物碱Strictamine的全合成