English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1648-1657 DOI: 10.7536/PC160333 前一篇   后一篇

• 综述与评论 •

聚乙烯醇基聚合物材料在多元驱动方式下的形状记忆行为

杜海燕1*, 雷霞2, 许玉玉1, 梁镇海1, 王永洪1   

  1. 1. 太原理工大学 化学化工学院 太原 030024;
    2. 中国石油兰州石化公司石油化工厂 兰州 730060
  • 收稿日期:2016-03-01 修回日期:2016-09-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 杜海燕 E-mail:duhaiyan428@163.com
  • 基金资助:
    国家自然科学基金项目(No.21304065)资助

Multi-Stimuli Induced Shape Memory Effect of Polymers Based on Poly(vinyl alcohol)

Du Haiyan1*, Lei Xia2, Xu Yuyu1, Liang Zhenhai1, Wang Yonghong1   

  1. 1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Petroleum Chemical Plant Lanzhou Petrochemical Company, Lanzhou 730060, China
  • Received:2016-03-01 Revised:2016-09-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21304065).
形状记忆聚合物(SMPs)是近些年发展起来的一种环境响应型智能材料。在外界刺激驱动下分子内或分子间会发生物化变化,分子结构和形态的改变使形变后的材料在宏观上回复到起始形态。常见的SMPs有聚乙烯、聚氨酯、聚己内酯等,而聚乙烯醇(PVA)的形状记忆效应是在热致型形状记忆凝胶被发现以来才引起人们关注的。由于PVA侧链富含大量羟基,化学活性高、易与官能团进行功能化改性,因此可设计出满足不同驱动方式的分子结构。目前研究者已采用冻融循环、化学或辐射交联、接枝改性及共混复合等多种方法制备了多种刺激源(如温度,溶剂、光、电、微波及超声波等)驱动下的形状记忆聚乙烯醇(SM-PVA)、PVA衍生物及复合材料。本文综述了近年来不同刺激源驱动下SM-PVA的研究进展,阐述了不同材料的结构性能、回复机理及存在的问题,并展望了PVA在该领域的发展和应用前景。
Shape memory polymers (SMPs) are a class of environment stimulated intelligent materials that developed in recent years. Under extra stimulation, physical and chemical changes will take place within or between molecules, and the deformed material can recover to its original shape due to the change of molecular structure and morphology. Various common SMPs such as poly(ethylene), poly(urethane), poly(caprolactone) have been developed, however, the shape memory effect of poly(vinyl alcohol) (PVA) has not attracted the attention until the thermal induced shape memory behavior of PVA gel was reported. Because there are abundant hydroxyl groups with high chemical activity in PVA side chains, it is easy to modify PVA with other functional groups. Different stimuli induced molecular structures can be designed according to the environmental requirement. Up to now, different methods including freeze-thaw cycle, chemical or irradiation cross-linking, graft modification and blending have been used to prepared various multi-stimuli (e.g. temperature, solvent, light, electricity, microwave and ultrasound) induced shape memory poly(vinyl alcohol) (SM-PVA), PVA derivatives and composites. The present article summarizes the research development of different stimuli induced SM-PVA of recent years. The structures and properties of different materials, the recovery mechanism, and the problems are described. The future development and applications of PVA in this field are also prospected.

Contents
1 Introduction
2 Multi-stimuli induced shape memory polymers based on PVA
2.1 Temperature induced shape memory gel and polymer
2.2 Light induced shape fix of PVA derivative
2.3 Solvent induced shape memory PVA and composites
2.4 Electroactive shape memory PVA composites
2.5 Ultrasound-triggered shape memory PVA
2.6 Microwave induced shape memory PVA and composites
3 Conclusion

中图分类号: 

()
[1] Behl M, Lendlein A. Mater. Today, 2007, 10:20.
[2] Lendlein A, Kelch S. Angew. Chem. Int. Ed., 2002, 41:2034.
[3] Zhao Q, Qi H J, Xie T. Prog. Polym. Sci., 2015, 49:79.
[4] Martin D H, Stefan B, Christine W, Ulrich S S. Prog. Polym. Sci., 2015, 49:3.
[5] 李兴建(Li X J),王亚茹(Wang Y R),郑朝晖(Zheng Z H),丁小斌(Ding X B),彭宇行(Peng Y X).化学进展(Progress in Chemistry), 2013, 25:1726.
[6] Kevin A C. Macromol. Symp., 2015, 358:194.
[7] Gayla J B, Matthew K M, Chen W, Christopher N B. Polymer, 2014, 25:5849.
[8] Meng Q H, Hu J L. Composites:Part A, 2009, 40:1661.
[9] Sun L, Huang W M, Ding Z, Zhao Y, Wang C C, Purnawali H, Tang C. Mater. Des., 2012, 33:577.
[10] Hu J, Zhu Y, Huang H, Lu J. Prog. Polym. Sci., 2012, 37:1720.
[11] Xie T. Polymer, 2011, 52:4985.
[12] 张海璇(Zhang H X),孟旬(Meng X),李平(Li P).化学进展(Progress in Chemistry), 2008, 20:657.
[13] 武元鹏(Wu Y P),林元华(Lin Y H),周莹(Zhou Y),左芳(Zuo F),郑朝晖(Zheng Z H), 丁小斌(Ding X B). 化学进展(Progress in Chemistry), 2012, 24:2004.
[14] Leng J S, Lan X, Liu Y J, Du S Y. Prog. Mater. Sci., 2011, 56:1077.
[15] Behl M, Zotzmann J, Lendlein A. Adv. Polym. Sci., 2009, 226:1.
[16] Lendlein A, Kelch S. Angew. Chem. Int. Ed., 2002, 41:2035.
[17] Lendlein A, Jiang H, Junger O, Langer R. Nature, 2005, 434:879.
[18] Jiang H, Kelch S, Lendlein A. Adv. Mater., 2006, 18:1471.
[19] Yang B, Huang W M, Li C, Lee C M, Li L. Smart Mater. Struct., 2004, 13:191.
[20] Mohr R, Kratz K, Weigel T, Gabor M L, Moneke M, Lendlein A. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:3540.
[21] Leng J S, Wu X, Liu Y J. Appl. Polym. Sci., 2009, 114:2455.
[22] Koerner H, Price G, Pearce N A, Alexander M, Vaia R A. Nature Mater., 2004, 3:115.
[23] 魏堃(Wei K), 朱光明(Zhu G M), 唐玉生(Tang Y S). 材料导报(Materials Review), 2011, 25:9.
[24] Hu J, Chen S J. Math. Chem., 2010, 20:3346.
[25] Luo H, Hu J, Zhu Y. Macromol. Chem. Phys., 2011, 212:1981.
[26] Liu T, Li J, Pan Y, Zheng Z, Ding X, Peng Y. Soft Matter, 2011, 7:1641.
[27] Xia S, Li X J, Wang Y R, Pan Y, Zheng Z H, Ding X B, Peng Y X. Smart Mater. Struct., 2014, 23:1.
[28] Liu T, Li J, Pan Y, Zheng Z H, Ding X B, Peng Y X. Soft Matter, 2011, 7:1641.
[29] Luo H Y, Liu Y, Yu Z J, Zhang S, Li B J. Biomacromolecules, 2008, 9:2573.
[30] Zhang S, Yu Z J, Thirumala G, Luo H Y, Li B J. Polymer, 2008, 49:3205.
[31] Yu Z J, Liu Y, Fan M M, Meng X W, Li B J, Zhang S. J Polym. Sci. Part B:Polym. Phys., 2010, 48:951.
[32] Luo H Y, Fan M M, Yu Z J, Meng X W, Li B J, Zhang S. Macromol. Chem. Phys., 2009, 210:669.
[33] Luo H Y, Liu Y, Yu Z J, Zhang S, Li B J. Biomacromolecules, 2008, 9:2573.
[34] Fan M M, Yu Z J, Luo H Y, Zhang S, Li B J. Macromol. Rapid Commun., 2009, 30:897.
[35] Gong T, Li W, Chen H, Wang L, Shao S, Zhou S. Acta Biomaterialia, 2012, 8:1248.
[36] Liu Y, Li Y, Yang G, Zheng X T, Zhou S B. ACS Appl. Mater. Interfaces, 2015,7:4118.
[37] Gong T, Zhao K, Wang W X, Chen H M, Wang L, Zhou S B. J. Mater. Chem. B, 2014, 2:6855.
[38] Ma L, Zhao J, Wang X Y, Chen M, Liang Y R, Wang Z W, Yu Z N, Hedden R C. Polymer, 2015, 56:490.
[39] Huang W M, Yang B, Zhao Y, Ding Z. J. Mater. Chem., 2010, 20:3367.
[40] Santhosh K S, Biju R, Reghunadhan N C P. React. Funct. Polym., 2013, 73:421.
[41] Salvekar A V, Zhou Y, Huang W M, Wong Y S, Venkatraman S S, Shen Z X, Zhu G M, Cui H P. Eur. Polym. J., 2015, 72:282.
[42] Hiral T, Maruyama H, Suzuki T, Hayashi S. J. Appl. Polym. Sci., 1992, 45:1849.
[43] Hiral T, Maruyama H, Suzuki T, Hayashi S. J. Appl. Polym. Sci., 1992, 46:1449.
[44] Du H Y, Zhang J H. Colloid. Polym. Sci., 2010, 288:15.
[45] Du H Y, Zhang J H. Sens. Actuators A, 2012, 179:114.
[46] Du F P, Ye E Z, Yang W, Shen T H, Tang C Y, Xie X L, Zhou X P, Law W C. Composites:Part B, 2015, 68:170.
[47] Li G, Yan Q, Xia H S, Zhao Y. ACS Appl. Mater. Interfaces, 2015, 7:12067.
[48] Basfar A A, Lotfy S. Radiat. Phys. Chem., 2015, 106:376.
[49] Mamada A, Tanaka T, Kungwatchakun D, Irief M P. Macromolecules, 1990, 23:1517.
[50] Yu Y, Ikeda T. Chem. Phys., 2005, 206:1705.
[51] Suzuki A, Tanaka T. Nature, 1990, 346:345.
[52] Lin A A, Reiser A. Macromolecules, 1989, 22:3898.
[53] Kuang G C, Jia Y, Jia X R, Lia Y, Chen E Q, Zhang Z X, Wei Y. Tetrahedron, 2009, 65:3496.
[54] Gupta P, Trenor S R, Long T E, Wilkes G L. Macromolecules, 2004, 37:9211.
[55] Deng J, Liu X, Shi W, Cheng C, He C, Zhao C. ACS Macro. Lett., 2014, 3:1130.
[56] Baer G M, Small W, Wilson T S, Benett W J, Matthews D L, Hartman J, Maitland D J. Biomed. Eng. Online, 2007, 6:43.
[57] Hribar K C, Metter R B, Ifkovits J L, Troxler T, Burdick J A. Small, 2009, 5:1830.
[58] Jiang H, Kelch S, Lendlein A. Adv. Mater., 2006, 18:1471.
[59] 王威(Wang W),王晓振(Wang X Z),程伏涛(Cheng F T),俞燕蕾(Yu Y L), 朱玉田(Zhu Y T). 化学进展(Progress in Chemistry), 2011, 23:1165.
[60] Coursan M, Desvergne J P. Macromol. Chem. Phys., 1996, 197:1599.
[61] Nakayama Y, Matsuda T. J. Appl. Polym. Sci., Part A:Polym. Chem., 1992, 30:2451.
[62] Ni Y, Zheng S. Chem. Mater., 2004, 16:5141.
[63] Sung S J, Cho K Y, Hah H, Lee J, Shim H K, Park J K. Polymer, 2006, 47:2314.
[64] Dong C M, Wu X, Caves J, Rele S S, Thomas B S, Chaikof E L. Biomaterials, 2005, 26:4041.
[65] Zhao X H, Dang Y, Deng J G, Zhang J H. Colloid Polym. Sci., 2014, 292:85.
[66] Yang B, Huang W M, Li C, Lee C M, Li L. Smart Mater. Struct., 2004, 13:191.
[67] Huang W M, Yang B. Appl. Phys. Lett., 2005, 86:114105.
[68] Lu H, Liu Y, Leng J, Du S. Smart Mater. Struct., 2009, 18:085003.
[69] Du H Y, Zhang J H. Soft Matter, 2010, 6, 3370.
[70] Qi X D, Yao X L, Deng S, Zhou T N, Fu Q. J. Mater. Chem. A, 2014, 2:2240.
[71] Wang L, Yang X F, Chen H M, Yang G, Gong T, Li W, Zhou S B. Polym. Chem., 2013, 4:4461.
[72] Wu T F, Kelly K O, Chen B Q. Eur. Polym. J., 2014, 53:230.
[73] Subramanyam U, Kennedy J P. J. Polym. Sci. Part A:Polym. Chem., 2009, 47:5272.
[74] Winterton L C, Lally J M, Sentell K B, Chapoy L L, J. Biomed. Mater. Res. Part B:Appl. Biol., 2006, 40:424.
[75] Lv H, Leng J, Liu Y, Du S, Adv. Mater. Res., 2008, 10:592.
[76] Li G, Fei G X, Xia H S, Hana J J, Zhao Y. J. Mater. Chem., 2012, 22:7692.
[77] Kima S I, Aida T, Niiyama H. Sep. Purif. Technol., 2005, 45:174.
[78] Kent M, Knochel R, Dascner F, Berger U K. Food Control., 2001, 12:467.
[79] Jones D A, Lelyveld T P, Mavrofidis S D, Kingman S W, Miles N J. Conservation Recycl., 2002, 34:75.
[80] He Z, Satarkar N, Xie T, Cheng Y, Hilt J Z. Adv. Mater., 2011, 23:3192.
[81] Du H, Yu Y, Jiang G, Zhang J, Bao V. Chem. Phys., 2011, 212:1460.
[82] Du H, Song Z, Wang J, Liang Z, Shen Y, You F. Sens. Actuators A, 2015, 228:1.
[83] Yu K, Liu Y, Leng J. RSC Adv., 2014, 4:2961.
[84] Zhang F, Zhou T, Liu Y, Leng J. Sci. Rep., 2015, 5:11152.
[85] Sun L, Huang W M. Mater. Des., 2010, 31:2684.
[86] Sokolowski W, Metcalfe A, Hayashi S, Yahia L, Raymond J. Biomed. Mater., 2007, 2:23.
[87] Banik S, Bandyopadhyay S, Ganguly S. Bioresour. Technol., 2003, 87:155.
[88] Pakhomov A G, Akyel Y, Pakhomova O N, Stuck B E, Murphy M R. Bioelcetromagnetics, 1998, 19:393.
[89] Lin J C. Bioelectromagnetics, 2004, 25:146.
[90] Ingrid A R. Polym. Eng. Sci., 2008, 48:2075.[FL)] [ST] [WT] [LM]
[1] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[2] 周宏伟, 丁小斌. Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能[J]. 化学进展, 2016, 28(1): 111-120.
[3] 周宏伟, 梁恩湘, 郑朝晖, 丁小斌, 彭宇行. 基于Belousov-Zhabotinsky自振荡反应的智能高分子[J]. 化学进展, 2011, 23(11): 2368-2376.
[4] 吕维华,王荣民,何玉凤,张慧芳. 智能涂料制备方法探索与应用*[J]. 化学进展, 2008, 20(0203): 351-361.
[5] 戴亚妮,李平,王爱勤. 智能高分子材料在智能给药系统中的应用*[J]. 化学进展, 2007, 19(0203): 362-369.
[6] 赵秀丽,丁小斌,郑朝晖,彭宇行,田春蓉,王建华,龙新平. 纳米金粒子/高分子复合物[J]. 化学进展, 2005, 17(05): 847-853.