English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1417-1425 DOI: 10.7536/PC160413 前一篇   后一篇

• 综述与评论 •

高离子强度下可溶盐浮选机理

李恩泽, 杜志平*, 王波, 成怀刚, 程芳琴*   

  1. 山西大学资源与环境工程研究所 国家环境保护煤炭废弃物资源化高效利用技术重点实验室 太原 030006
  • 收稿日期:2016-04-01 修回日期:2016-05-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 杜志平, 程芳琴 E-mail:duzhiping@sxu.edu.cn;cfangqin@sxu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21376144)资助

Flotation Mechanism of Soluble Salts with High Ionic Strength

Li Enze, Du Zhiping*, Wang Bo, Cheng Huaigang, Cheng Fangqin*   

  1. State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030006, China
  • Received:2016-04-01 Revised:2016-05-01 Online:2016-09-15 Published:2016-08-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21376144).
基于表面化学性质,泡沫浮选已成为一种分离非均质固体混合物的有效手段,并被广泛应用于原矿分离及其他化学工业。在浮选过程中,捕收剂往往对矿物表面进行选择性吸附以调控矿物表面的亲疏水性。目前,大部分可溶盐的生产,尤其是钾盐工业生产,主要采用泡沫浮选的方法。尽管可溶盐实际浮选体系很复杂,但主要包含矿物晶体、捕收剂、气泡和高离子强度的饱和盐溶液四种组分。实际上,浮选能否完成是这四种组分相互作用的结果。因此,大量的可溶盐浮选机理研究工作都集中于浮选体系中各组分之间的相互作用。本文对高离子强度下可溶盐浮选机理的主要研究成果进行了综述,重点介绍了可溶盐的溶液化学性质,捕收剂在饱和盐溶液中的胶体性质,捕收剂在矿物晶体表面的选择性吸附机制和吸附行为,矿物晶体/饱和盐溶液界面性质以及气泡在浮选过程中作用机理,并对高离子强度下可溶盐浮选机理研究的发展趋势进行了展望。
Froth flotation, based on chemical phenomena occurring at the interfaces including solid/water and air/water, becomes an efficient means of separating heterogeneous mixtures of finely subdivided solids with bubbles floating and is widely used within the primary mineral and chemical industries. In the process of froth flotation, collectors are always used to adjust the hydrophobicity of mineral surface through selective adsorption. Nowadays, most of soluble salts, especially potash, are produced through froth flotation. Although the flotation systems of soluble salts are complicated in the actual production, they are mainly comprised of salt crystal, collector, bubbles and saturated salt solution with high ionic strength. Actually, the soluble salt flotation is the results of the interaction among these four components. Thus, lots of researches about flotation mechanism of soluble salts focus on these interactions. This paper summarizes the recent progress in the flotation mechanism of soluble salts with high ionic strength. The solution chemistry of soluble salts, colloidal properties of collector in saturated salt solution, adsorption behaviors of collectors on surface of salt crystal, interfacial properties of salt crystal/saturated salt solution and the role of bubbles in the froth flotation are reviewed emphatically. Finally, the trend for future research on flotation mechanism of soluble salts is also prospected.

Contents
1 Introduction
2 Solution chemistry of soluble salts
2.1 Structure of hydrated ions
2.2 Viscosity
3 Properties of collector in solution with high ionic strength
3.1 Krafft point
3.2 Surface activity and aggregation behaviors
4 Selective adsorption of collector
5 Interfacial properties of mineral crystal/saturated salt solution in high ionic strength environment
5.1 Surface charge of crystal surface
5.2 Wetting characteristics of crystal surface
6 The role of bubbles in flotation system with high ionic strength
7 Conclusion

中图分类号: 

()
[1] Marcus Y. Biophys. Chem., 1994, 51:111.
[2] Chalikian T V. J. Phys. Chem. B, 2001, 105:12566.
[3] Du H, Rasaiah J C, Miller J D. J. Phys. Chem. B, 2007, 111:209.
[4] Max J J, Chapados C. J. Chem. Phys., 2001, 115:2664.
[5] Dillon S R, Dougherty R C. J.Phys. Chem. A, 2002, 106:7647.
[6] Dang L X. J. Am. Chem. Soc., 1995, 117:6954.
[7] Hancer M, Celik M S, Miller J D. J. Colloid Interface Sci., 2001, 235:150.
[8] Koneshan S, Rasaiah J C, Lynden-Bell R M, Lee S H. J. Phys. Chem. B, 1998, 102:4193.
[9] Licheri G, Piccaluga G, Pinna G. Chem. Phys. Lett., 1975, 35:119.
[10] Lawrence R M, Kruh R F. J. Chem. Phys., 1967, 47:4758.
[11] Yamagami M, Wakita H, Yamaguchi T. J. Chem. Phys., 1995, 103:8174.
[12] Du H, Ozdemir O, Wang X, Cheng F, Celik M S, Miller J D. Miner. Metall. Proc., 2014, 31:1.
[13] Nickolov Z S, Miller J D. J. Colloid Interface Sci., 2005, 287:572.
[14] Cheng F, Cao Q, Guan Y, Cheng H, Wang X, Miller J D. Int. J. Miner. Process., 2013, 122:36.
[15] Hancer M. Doctoral Dissertation of The University of Utah, 2000.
[16] Desnoyers J E, Perron G. J. Solution Chem., 1972, 1:199.
[17] Ozdemir O, Celik M S, Nickolov Z S, Miller J D. J. Colloid Interf. Sci., 2007, 314:545.
[18] Marcus Y. Chem. Rev., 2009, 109:1346.
[19] Broome F K, Hoerr C W, Harwood H J. J. Am. Chem. Soc., 1951, 73:3350.
[20] Eggenberger D N, Harwood H J. J. Am. Chem. Soc., 1951, 73:3353.
[21] Brandrup J, Immergut E H. Polymer Handbook. 2nd ed. Wiley, 1975.
[22] Dai Q, Laskowski J S. Langmuir, 1991, 7:1361.
[23] Laskowski J S, Pawlik M, Ansari A. Can. Metall. Quart., 2007, 46:295.
[24] Cao Q, Du H, Miller J D, Wang X, Cheng F. Miner. Eng., 2010, 23:365.
[25] 段平梅(Duan P M), 杜志平(Du Z P), 李达(Li D), 李恩泽(Li E Z), 程芳琴(Cheng F Q). 精细化工(Fine Chemicals), 2015, 32:1.
[26] Roman R J, Fuerstenau M C, Seidel D C. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968, 1:56.
[27] Burdukova E, Laskowski J. Can. J. Chem. Eng., 2009, 87:441.
[28] Gaudin A. Flotation.2nd ed. NY:McGraw-Hill, 1957.
[29] Fuerstenau D W, Fuerstenau M C. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1956, 205:302.
[30] Rogers J, Schulman J H. Electrical Phenomena and Solid/Liquid Interface, Proceedings of the Second International Congress of Surface Activity Ⅲ, 1957. 243.
[31] Rogers J. Institution of Mining and Metallurgy Bulletin, 1957, 607:439.
[32] Bichowsky F R, Rossini F D. Thermochemistry of the substances. New York:Reinhold, 1936.
[33] Miller J D, Yalamanchili M R, Kellar J J. Langmuir, 1992, 8:1464.
[34] Hancer M, Miller J D. Miner. Eng., 2000, 13:1483.
[35] Ozdemir O, Du H, Karakashev S I, Nguyen A V, Celik M S, Miller J D. Adv. Colloid Interf. Sci., 2011, 163:1.
[36] Du H, Miller J D. J.Phys. Chem. C, 2007, 111:10013
[37] Li E, Du Z, Yuan S, Cheng F. Miner. Eng., 2015, 83:53.
[38] Ozdemir O, Karaguzel C, Nguyen A V, Celik M S, Miller J D. Miner. Eng., 2009, 22:168.
[39] Veeramasuneni S, Hu Y, Miller J D. Surf. Sci., 1997, 382:127.
[40] Yalamanchili M R, Kellar J J, Miller J D. Int. J. Miner. Process., 1993, 39:137.
[41] Schubert H. Eng. Min. J., 1967, 168:94.
[42] Schubert H. Aufbereitungs Technik, 1988, 29:427.
[43] Miller J, Veeramasuneni S, Yalamanchili M. Int. J. Miner. Process., 1997, 51:111.
[44] Smolders C A. Recueil, 1961, 80:650.
[45] Leja J, Schulman J H. Trans. AIME, 1954, 199:221.
[46] Gaines G L. Insoluble Monolayers at Liquid-Gas Interfaces. New York:Interscience, 1966.
[47] Gaines G L. Nature, 1982, 298:544.
[48] Laskowski J S. Miner. Eng., 2013, 45:170.
[49] Laskowski J S, Cho Y S, Ding K. Can. J. Chem. Eng., 2003, 81:63.
[1] 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223.
[2] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[3] 李大勇*, 王伟杰, 赵学增*. 固液界面纳米气泡研究[J]. 化学进展, 2012, 24(08): 1447-1455.
[4] 张雪花,胡钧. 固液界面纳米气泡的研究进展[J]. 化学进展, 2004, 16(05): 673-.
阅读次数
全文


摘要