English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1930-1941 DOI: 10.7536/PC140646 前一篇   后一篇

• 综述与评论 •

纳米银形状控制合成与聚合物纳米银复合材料

钟震1, 路航1, 任天斌*1,2   

  1. 1. 同济大学材料科学与工程学院 上海 201804;
    2. 同济大学先进土木工程材料教育部重点实验室 上海 201804
  • 收稿日期:2014-06-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 任天斌 E-mail:rentianbin@yeah.net

Shape Control Synthesis of Silver Nanoparticles and Silver Polymeric Nanocomposites

Zhong Zhen1, Lu Hang1, Ren Tianbin*1,2   

  1. 1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
    2. Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2014-06-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19

纳米银(Ag NPs)由于其独特的物理、化学和生物学特性备受研究人员的关注.纳米银应用性能除了受到粒子尺寸、分布、纯度等因素影响,还与纳米银的形状密切相关.纳米银的形状对纳米银的抗菌性能、光学性能以及聚合物纳米银复合材料的综合性能都会产生重要影响.纳米银的形状控制合成可以进一步发挥聚合物纳米银复合材料的性能潜力.因此,不断发展纳米银新的合成方法,研究纳米银形状控制的机理就显得尤为重要.本文综述了纳米银合成方法和不同形状纳米银的最新研究进展,合成方法重点介绍了辐射法、激光烧蚀法、电化学法、光化学法和生物合成法,评述了这些方法的优缺点;同时从模板法、动力学、热力学以及氧化刻蚀4个方面介绍了纳米银形状控制的机理.介绍了聚合物纳米银复合材料的研究进展.

Silver nanoparticles have been the focus of research in recent decades because of their distinct physical, chemical, and biological properties. The application properties of silver nanoparticles are influenced not only by their size, size distribution and purity but also the shape. The differently shaped silver nanoparticles have strong effects on its antibacterial properties, optical properties and the comprehensive performance of silver polymeric nanocomposites. More potential properties of silver polymeric nanocomposites will be achieved by shape control synthesis of silver particles. Thus, the development and improvement of the synthetic methods and the research of the mechanism of shape control of silver nanoparticles have become more and more important. In this paper, recent progress in synthetic methods of silver nanoparticles and different shapes of silver nanoparticles is reviewed. Radiolytic methods, laser ablation methods, electrochemical methods, photochemical methods and biosynthesis of silver nanoparticles have been discussed. Their advantages and disadvantages are highlighted. The mechanism of shape control, including template-directed methods, thermodynamic control, kinetic control and oxidative etching is presented. The development of silver polymeric nanocomposites has been introduced.

Contents
1 Introduction
2 Shape control synthesis of silver nanoparticles
2.1 Synthetic methods
2.2 Shape control mechanism
2.3 Different shapes of Ag NPs
3 Silver polymeric nanocomposites
3.1 Engineering polymers
3.2 Conductive polymers
3.3 Biopolymers
3.4 Amphiphilic polymers
3.5 Liquid crystalline polymers
3.6 Natural polymers
4 Conclusion and outlook

中图分类号: 

()

[1] De M, Ghosh P S, Rotello V M. Adv. Mater., 2008, 20: 4225.
[2] Murray B J, Walter E C, Penner R M. Nano Lett., 2004, 4: 665.
[3] Jiang X C, Yu A B. Langmuir, 2008, 24(8): 4300.
[4] Dubas S T, Pimpan V. Talanta, 2008, 76: 29.
[5] Rashid H, Mandal T K. J. Phys. Chem. C, 2007, 111: 16750.
[6] Sharma V K, Yngard R A, Lin Y. Adv. Colloid Sur. Interface, 2009, 145: 83.
[7] Chaudhuri G, Paria S. Chem. Rev., 2012, 112: 2373.
[8] Liu W J, Zhang Z C, He W D, Zheng C, Ge X W, Li J, Liu H R, Jiang H. J. Solid State Chem., 2006, 179: 1253.
[9] Krutyakov Y A, Kudrinskiy A A, Olenin A Y, Lisichkin G V. Russ. Chem. Rev., 2008, 77: 233.
[10] Olga S I, Francis P Z. J. Am. Chem. Soc., 2010, 132(1): 70.
[11] Pietrobon B, Kitaev V. Chem. Mater., 2008, 20: 5186.
[12] Lengke M F, Fleet M E, Southam G. Langmuir, 2007, 23(5): 2694.
[13] Jacob J A, Kapoor S, Biswas N, Mukherjee T. Colloids Surf. A, 2007, 301: 329.
[14] Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepi D? ka P, Švor D? ík S. Mater. Lett., 2012, 89: 47.
[15] Mafuné F, Kohno J, Takeda Y, Kondow T, Sawbe H. J. Phys. Chem. B, 2000, 104: 9111.
[16] Nickel U, Castell A Z, Poppl K, Schneider S. Langmuir, 2000, 16: 9087.
[17] Shenashen M A, El-Safty S A, Elshehy E A. Part. Part. Syst. Charact., 2014, 31: 293.
[18] Rodríguez-Sánchez L, Blanco M C, López-Quintela M A. J. Phys. Chem. B, 2000, 104(41): 9683.
[19] Sato-Berrú R, Redón R, Vázquez-Olmos A, Saniger J M. J. Raman Spectrosc., 2009, 40: 376.
[20] Huang L, Zhai M L, Long D W, Peng J, Xu L, Wu G Z, Li J Q, Wei G S. J. Nanopart. Res., 2008, 10: 1193.
[21] Pal A, Sha S, Devi S. Mater. Chem. Phys., 2009, 114: 530.
[22] Mohanpuria P, Rana N K, Yadav S K. J. Nanopart. Res., 2008, 10: 507.
[23] Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R, Sastry M. Colloids Surf. B, 2003, 28: 313.
[24] Durán N, Marcato P D, Alves O L, Souza G I D, Esposito E. J. Nanobiotechnol., 2005, 3: 8.
[25] Mittal A K, Chisti Y, Banerjee U C. Biotech. Adv., 2013, 31: 346.
[26] Velayutham K, Rahuman A A, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C. Parasitol. Res., 2012, 111: 2329.
[27] Patil R S, Kokate M R, Kolekar S S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 91: 234.
[28] Shukla V K, Singh R P, Pandey A C. J. Alloys Compd., 2010, 507: 13.
[29] Ghoreishin S M, Behpour M, Khayatkashani M. Phys. E, 2011, 44: 97.
[30] Jain D, Daima H K, Kachhwaha S, Kothari S. Digest J. Nanomater. Bios., 2009, 4: 557.
[31] Bar H, Bhui D K, Sahoo G P, Sarkar P, Pyne S, Misra A. Colloids Surf. A: Physicochem. Eng. Aspects, 2009, 348: 212.
[32] Edison T J I, Sethuraman M G. Adv. Mater. Lett., 2013, 104: 262.
[33] Bankar A, Joshi B, Kumar A R, Zinjarde S. Colloids Surf. A:Physicochem. Eng. Aspects, 2010, 368: 58.
[34] Lee D K, Kang Y S. ETRI J., 2004, 26: 252.
[35] He C D, Liu L L, Fang Z G, Liu J, Guo J B, Wei J. Ultrason. Sonochem., 2014, 21(2): 542.
[36] Wani I A, Khatoon S, Ganguly A, Ahmed J, Ahmad T. Colloid. Surf. B:Biointerfaces, 2013, 101: 243.
[37] Harra J, Mäkitalo J, Siikanen R, Virkki M, Genty G, Kobayashi T, Kauranen M, Mäkelä J M. J. Nanopart. Res., 2012, 14(6): 870.
[38] Gou L F, Chipara M, Zaleski M F. Chem. Mater., 2007, 19: 1755.
[39] Dabin Y, Vivian W Y. J. Phys. Chem. B, 2005, 109(12): 5497.
[40] Samanta S, Sarkar P, Pyne S, Sahoo G P, Misra A. J. Mol. Liq., 2012, 165: 21.
[41] Sun Y, Xia Y N. Science, 2002, 298: 2176.
[42] Wiley B, Sun Y, Mayers B, Xia Y N. Chem. Eur. J., 2005, 11: 454.
[43] Liu J J, Hu M G, Song Y, Wang F, Ji J, Li Z L. Synth. Met., 2014, 187: 185.
[44] Zeng J, Zheng Y, Rycenga M, Tao J, Li Z Y, Zhang Q, Zhu Y, Xia Y N. J. Am. Chem. Soc., 2010, 132: 8552.
[45] Kottmann J P, Martin O J F, Smith D R, Schultz S. Phys. Rev. B, 2001, 64: 235402.
[46] Zhou Q, He Y P, Abell J, Zhang Z J, Zhao Y P. J. Phys. Chem. C, 2011, 115: 14131.
[47] Pal S, Tak Y K, Song J M. Appl. Environ. Microbiol., 2007, 73: 1712.
[48] Polte J, Tuaev X, Wuithschick M, Fischer A, Thuenemann A F, Rademann K, Kraehnert R, Emmerling F. ACS Nano, 2012, 6(7): 5791.
[49] Siekkinen A R, McLellan J M, Chen J Y, Xia Y N. Chem. Phys. Lett., 2006, 432: 491.
[50] Xiong Y J, Siekkinen A R, Wang J G, Yin Y D, Kim M J, Xia Y N. J. Mater. Chem., 2007, 17: 2600.
[51] Jiang X C, Chen C Y, Chen W M, Yu A B. Langmuir, 2010, 26(6): 4400.
[52] Wang Z L. J. Phys. Chem. B, 2000, 104: 1153.
[53] Allpress J G, Sanders J V. Surf. Sci., 1967, 7: 1.
[54] Kilin D S, Prezhdo O V, Xia Y N. Chem. Phys. Lett., 2008, 458: 113.
[55] Zeng Q H, Jiang X C, Yu A B, Lu G Q. Nanotechnology, 2007, 18: 035708.
[56] Xiong Y J, Chen J Y, Wiley B, Xia Y N, Aloni S, Yin Y D. J. Am. Chem. Soc., 2005, 127: 7332.
[57] Wiley B, Hericks T, Sun Y G, Xia Y N. Nano Lett., 2004, 4(9): 1733.
[58] Oliveira C C S, Ando R A, Camargo P H C. Phys. Chem. Chem. Phys., 2013, 15: 1887.
[59] Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Nano Lett., 2006, 6(4): 765.
[60] Wiley B, Sun Y G, Xia Y N. Langmuir, 2005, 21(18): 8077.
[61] Tsuji M, Gomi S, Maeda Y, Matsunaga M, Hikino S, Uto K, Tsuji T, Kawazumi H. Langmuir, 2012, 28: 8845.
[62] Korte K E, Skrabalak S E, Xia Y N. J. Mater. Chem., 2008, 18: 437.
[63] Burda C, Chen X, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105: 1025.
[64] Reches M, Gazit E. Science, 2003, 300: 625.
[65] Ohde H, Hun F, Wai C M. Chem. Mater., 2001, 13: 4130.
[66] Zhang W Z, Qiao X L, Chen J G, Chen Q Y. Mater. Lett., 2008, 62: 1689.
[67] Maillard M, Giorgio S, Pileni M P. J. Phys. Chem. B, 2003, 107: 2466.
[68] Yang R, Sui C, Gong J, Qu L. Mater. Lett., 2007, 61: 900.
[69] Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Science, 2001, 294: 1901.
[70] Jin R C, Cao Y C, Hao E C, Metraux G S, Schatz G C, Mirkin C A. Nature, 2003, 425: 487.
[71] Im S H, Lee Y T, Wiley B, Xia Y N. Angew. Chem., 2005, 117: 2192.
[72] Chen D P, Zhu G, Zhu X G, Qiao X L, Chen J G. J. Mater. Sci. Mater. Electron., 2011, 22: 1788.
[73] Yu D, Yam W V. J. Am. Chem. Soc., 2004, 126: 13200.
[74] Kundu S, Maheshwari V, Niu S, Saraf R F. Nanotechnology, 2008, 19: 065604.
[75] Sun Y, Yin Y, Mayers B T, Herricks T, Xia Y N. Chem. Mater., 2002, 14: 4736.
[76] Govindaraj A, Satishkumar B C, Nath M, Rao C N R. Chem. Mater., 2000, 12: 202.
[77] Zhang D, Qi L, Ma J, Cheng H. Chem. Mater., 2001, 13: 2753.
[78] Zong R L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X W, Li L T, Buddhudu S. J. Phys. Chem. B, 2004, 108: 16713.
[79] Liu L L, He C D, Li J, Guo J B, Yang D, Wei J. New J. Chem., 2013, 37: 2179.
[80] Rashid M H, Mandal T K. J. Phys. Chem. C, 2007, 111: 16750.
[81] Zhu J J. Liu S W, Palchik O, Koltypin Y, Gedanken A. Langmuir, 2000, 16: 6396.
[82] Zhou Q, Wang S, Jia N Q, Liu L, Yang J J, Jiang Z Y. Mater. Lett., 2006, 60: 3789.
[83] Gupta S, Prakash R. RSC Adv., 2014, 4: 7521.
[84] Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13: 1389.
[85] Mahmoud M A, El-Sayed M A. J. Phys. Chem. Lett., 2013, 4(23): 1541.
[86] Ojha A K, Forster S, Kumar S, Vats S, Negi S, Fischer I. J. Nanobiotech., 2013, 11: 42.
[87] Akhavan O, Ghaderi E. Sci. Technol. Adv. Mat., 2009, 10(1): 015003.
[88] Pietrobon B, Kitaev V. Chem. Mater., 2008, 20: 5186.
[89] Zhou J, An J, Tang B, Xu S, Cao Y, Zhao B, Xu W, Chang J, Lombardi J R. Langmuir, 2008, 24: 10407.
[90] Habas S E, Lee H, Radmilovic V, Somorjai G A, Yang P. Nat. Mater., 2007, 6: 692.
[91] Zhang J, Li S, Wu J, Schatz G, Mirkin C. Angew. Chem. Int. Ed., 2009, 121: 7921.
[92] Wiley B, Chen Y, McLellan J, Xiong Y, Li Z Y, Ginger D, Xia Y N. Nano Lett., 2007, 7: 1032.
[93] Ramirez B M L G, Glorieux C, Martinez E S M, Cuautle J J A F. Appl. Therm. Eng., 2014, 62(2): 838.
[94] Maity D, Bain M K, Bhowmick B, Sarkar J, Saha S, Acharya K, Chakraborty M, Chattopadhyay D. J. Appl. Polym. Sci., 2011, 122(4): 2189.
[95] Domenech B, Vigues N, Mas J, Munoz M, Muraviev D N, Macanas J. Solvent Extr. Ion Exc., 2014, 32(3): 301.
[96] Netzer N L, Tanaka Z, Chen B, Jiang C Y. J. Phys. Chem. C, 2013, 117: 16187.
[97] Harun MM. Inte. J. Bio. Macromol., 2014, 68:178—184
[120] Gao X H, Wei L Q, Yan H, Xu B S. Mater. Lett., 2011, 65:2963—2965

 

[1] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[2] 陈德皓, 徐常登, 刘子立, 陈玲, 甄春花, 孙世刚. 功能分子在贵金属纳米晶催化剂形状控制合成中的作用机理[J]. 化学进展, 2013, 25(10): 1667-1680.
[3] 安静,王德松,罗青枝,李雪艳,李敏娜,袁晓燕. 银/聚合物纳米复合材料[J]. 化学进展, 2008, 20(06): 859-868.
阅读次数
全文


摘要