English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1187-1197 DOI: 10.7536/PC121130 前一篇   后一篇

• 综述与评论 •

纳米粒子参与的鲁米诺化学发光及其分析应用

吴亮, 沐春磊, 张群林*, 吕忱, 张晓悦   

  1. 安徽医科大学药学院 合肥 230032
  • 收稿日期:2012-10-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 张群林 E-mail:qlzhang@ahmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.30973674)和安徽省杰出青年科学基金项目(No.1308085JGD10)资助

Nanoparticle-Involved Luminol Chemiluminescence and Its Analytical Applications

Wu Liang, Mu Chunlei, Zhang Qunlin*, Lü Chen, Zhang Xiaoyue   

  1. School of Pharmacy, Anhui Medical University, Hefei 230032, China
  • Received:2012-10-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

化学发光的基础理论和分析应用已经有多年的研究历史,但化学发光的研究多局限于分子和离子水平。纳米粒子由于其量子尺寸效应、表面能高以及比表面积大,因而常作为氧化还原反应的催化剂来放大反应信号。近年来,纳米粒子直接或者间接参与的化学发光拓展了化学发光的理论和应用研究范畴,己发现纳米粒子能够作为催化剂、还原剂、微尺度反应平台和能量接受体等参与化学发光反应。本文详细介绍了纳米粒子参与的鲁米诺化学发光体系,并重点评述了部分纳米粒子参与的鲁米诺化学发光与高效液相色谱、毛细管电泳等分离技术联用实例。纳米粒子作为一种新型化学发光响应单元,可提高鲁米诺化学发光反应的效率,对开发新的鲁米诺化学发光反应体系具有重要意义,已有关于金、铂、银、合金、半导体、磁性等纳米粒子参与的鲁米诺化学发光报道。除应用于环境、药品及食品等分析领域外,其在免疫分析方面也表现出巨大的应用潜力。最后,提出了纳米粒子参与鲁米诺化学发光体系研究目前存在的问题,并对其未来的发展方向进行了展望。

The theory and applications of chemiluminescence (CL) have been investigated for many years, but the study of CL was limited to the molecular and ion systems. Nanoparticles (NPs) have quantum size effects, high surface energy, and large surface area, which dramatically change their density states and the spatial scale of their electronic motion. The redox reactions can be strongly catalyzed by NPs, which is promising for the signal amplification of CL. In the recent years, NP-involved CL became one of the most attractive developments, in which NPs can participate in CL reactions as catalyst,reductant, nanosized reaction platform, and energy acceptor. In this review, the NP-involved luminol CL system and its coupling with separation technology such as high performance liquid chromatography (HPLC), capillary electrophoresis (CE) are described. NPs as a novel response unit of CL system are very important for increasing the luminescent efficiency of luminol reaction and developing new luminol CL system. Different kinds of NPs have been reported to participate luminol CL reaction, including gold (AuNPs), platinum (PtNPs), silver (AgNPs), bimetallic NPs, semiconductor NPs, and magnetic (MNPs). The NP-involved luminol CL is not only widely applied in the environmental, pharmaceutical and food analysis, but also shows great potential in immunoassay. Furthermore, some critical challenges and their possible solutions in the study of NP-involved luminol CL are briefly discussed. Contents
1 Introduction
2 AuNPs-catalyzed luminol CL
2.1 AuNPs-catalyzed luminol-H2O2 CL
2.2 AuNPs-catalyzed luminol-ferricyanide CL
2.3 AuNPs-catalyzed luminol-periodate CL
2.4 AuNPs-catalyzed luminol-AgNO3 CL
2.5 AuNPs-catalyzed other luminol CL
3 PtNPs involved luminol CL
4 AgNPs involved luminol CL
5 Other nanoparticles-involved luminol CL
5.1 Bimetallic nanoparticles-involved luminol CL
5.2 Semiconductor nanoparticles-involved luminol CL
5.3 Magnetic nanoparticles-involved luminol CL
6 Separation technology coupling with nanoparticles-involved luminol CL detection
6.1 Coupling with HPLC
6.2 Coupling with CE
7 Conclusion and outlook

中图分类号: 

()

[1] DE Dios A S, Diaz-Garcia M E. Anal. Chim. Acta, 2010, 666: 1-22
[2] Lines M G. J. Alloys Compd., 2008, 449: 242-245
[3] Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes T F. Sci. Total Environ., 2010, 408: 1745-1754
[4] Wardencki W, Zygmunt B. Anal. Chim. Acta, 1991, 255: 1-13
[5] Mendenhall G D. Angew. Chem. Int. Ed., 1990, 29: 362-373
[6] Beck S, Koster H. Anal. Chem., 1990, 62: 2258-2270
[7] Steele R W. Clin. Infect. Dis., 1991, 13: 918-925
[8] Wang X, Lin J M, Liu M L, Cheng X L. Trends Anal. Chem., 2009, 28: 75-87
[9] Lu C, Qu F, Lin J M, Yamada M. Anal. Chim. Acta, 2002, 474: 107-114
[10] Lu C, Lin J M. Catal. Today, 2004, 90: 343-347
[11] Liang S X, Zhao L X, Zhang B T, Lin J M. J. Phys. Chem. A, 2008, 112: 618-623
[12] Marquette C A, Blum L J. Anal. Bioanal. Chem., 2006, 385: 546-554
[13] Yamaguchi M, Yoshida H, Nohta H. J. Chromatogr. A, 2002, 950: 1-19
[14] Isacsson U, Wettermark G. Anal. Chim. Acta, 1974, 68: 339-362
[15] White E H, Bursey M M. J. Am. Chem. Soc., 1964, 86: 941-942
[16] Lin J M, Yamada M. Anal. Chem., 2000, 72: 1148-1155
[17] Lu C, Song G, Lin J M. Trends Anal. Chem., 2006, 25: 985-995
[18] Lin J M, Yamada M. Trends Anal. Chem., 2003, 22: 99-107
[19] Giokas D L, Vlessidis A G, Tsogas G Z, Evmiridis N P. Trends Anal. Chem., 2010, 29: 1113-1126
[20] Zhang Z F, Cui H, Lai C Z, Liu L J. Anal. Chem., 2005, 77: 3324-3329
[21] Wang L, Yang P, Li Y X, Chen H, Li M, Luo F. Talanta, 2007, 72: 1066-1072
[22] Lan D, Li B, Zhang Z J. Biosens. Bioelectron., 2008, 24: 934-938
[23] Li Q Q, Liu F, Lu C, Lin J M. J. Phys. Chem. C, 2011, 115: 10964-10970
[24] Chen Q S, Bai S L, Lu C. Talanta, 2012, 89: 142-148
[25] Lu C, Li Q Q, Chen S, Zhao L, Zheng Z. Talanta, 2011, 85: 476-481
[26] Yang X Y, GuoY S, Bi S, Zhang S S. Biosens. Bioelectron., 2009, 24: 2707-2711
[27] Yang X Y, Guo Y S, Wang A G. Anal. Chim. Acta, 2010, 666: 91-96
[28] Li Q Q, Zhang L J, Li J, Lu C. Trends Anal. Chem., 2011, 30: 401-413
[29] Duan C F, Cui H, Zhang Z F, Liu B, Guo J Z, Wang W. J. Phys. Chem. C, 2007, 111: 4561-4566
[30] Li S F, Li X Z, Xu J, Wei X. Talanta, 2008, 75: 32-37
[31] Zisimopoulos E G, Tsogas G Z, Giokas D L, Kapakoglou N I, Vlessidis A G. Talanta, 2009, 79: 893-899
[32] Koutsoulis N P, Giokas D L, Vlessidis A G, Tsogas G Z. Anal. Chim. Acta, 2010, 669: 45-52
[33] Cao Z J, Lau C, Lu J Z. Analyst, 2004, 129: 1262-1266
[34] Cui H, Guo J Z, Li N, Liu L J. J. Phys. Chem. C, 2008, 112: 11319-11323
[35] Duan C F, Yu Y Q, Cui H. Analyst, 2008, 133: 1250-1255
[36] Boro R C, Kaushal J, Nangia Y, Wangoo N, Bhasinc A, Raman Suri C. Analyst, 2011, 136: 2125-2130
[37] Du J X, Quan J, WangY D. Talanta, 2012, 90: 117-122
[38] Safavi A, Absalan G, Bamdad F. Anal. Chim. Acta, 2008, 610: 243-248
[39] Xu S L, Cui H. Luminescence, 2007, 22: 77-87
[40] Niazov T, Shlyahovsky B, Willner I. J. Am. Chem. Soc., 2007, 129: 6374-6375
[41] Gorman B A, Francis P S, Dunstan D E, Barnett N W. Chem. Commun., 2007, 395-397
[42] Guo J Z, Cui H, Zhou W, Wang W. J. Photochem. Photobiol., A, 2008, 193: 89-96
[43] Chen H, Gao F, He R, Cui D X. J. Colloid Interface Sci., 2007, 315: 158-163
[44] Li Y H, Li Y K, Yang Y. Appl. Spectrosc., 2011, 65: 376-381
[45] Li N, Gu J, Cui H. J. Photochem. Photobiol. A, 2010, 215: 185-190
[46] Liu W, Kou J, Jiang X L, Zhang Z J, Qi H L. J. Lumin., 2012, 132: 1048-1054
[47] 寇娟(Kou J), 刘伟(Liu W), 王瑞平(Wang D P), 章竹君(Zhang Z J). 分析试验室(Chin. J. Anal. Lab.), 2012, 31: 1-5
[48] Liu C, Li B X. Anal. Bioanal. Chem., 2011, 401: 229-235
[49] Li S F, Sun H M, Wang D, Hong J G, Tao S J, Yu H Y, Wang X H, Wei X W. Luminescence, 2012, 27: 211-216
[50] Chen X L, Wang C, Tan X M, Wang J. Anal. Chim. Acta, 2011, 689: 92-96
[51] Haghighi B, Bozorgzadeh S. Microchem. J., 2010, 95: 192-197
[52] Lee I, Han SW, Kim K. Chem. Commun., 2001, 1782-1783
[53] Ibanez F J, Zamborini F P. ACS Nano, 2008, 2: 1543-1552
[54] Li S F, Zhang X M, Yao Z J, Yu R, Huang F, Wei X W. J. Phys. Chem. C, 2009, 113: 15586-15596
[55] Li N, Wang W, Tian D Y, Cui H. Chem. Commun., 2010, 1520-1522
[56] Li S F, Tao S J, Wang F F, Hong J G, Wei X W. Microchim. Acta, 2010, 169: 73-78
[57] Huang X Y, Li L, Qian H F, Dong C, Ren J. Angew. Chem. Int. Ed., 2006, 45: 5140-5143
[58] Li S F, Zhang X M, Du W X, Ni Y H, Wei X W. J. Phys. Chem. C, 2009, 113: 1046-1051
[59] Wu J, Fu X C, Xie C G, Yang M, Fang W, Gao S. Sens. Actuators B, 2011, 160: 511-516
[60] Chen W, Hong L, Liu A L, Liu J Q, Lin X H, Xia X H. Talanta, 2012, 99: 643-648
[61] He S H, Shi W B, Zhang X D, Li J, Huang Y. Talanta, 2010, 82: 377-383
[62] Shi W B, Wang H, Huang Y M. Luminescence, 2011, 26: 547-552
[63] Rezaei B, Ensafi A A, Zarei L, Kameli P. Luminescence, 2012, 27: 390-397
[64] Li N, Guo J Z, Yu Y Q, Yu Y, Cui H, Mao L, Lin Y. Anal. Chim. Acta, 2009, 645: 48-55
[65] Li Q Q, Shang F, Lu C, Zheng Z, Lin J M. J. Chromatogr. A, 2011, 1218: 9064-9070
[66] Zhang Q L, Wu L, Lv C, Zhang X Y. J. Chromatogr. A, 2012, 1242: 84-91
[67] Zhao S L, Niu T X, Song Y R, Liu Y M. Electrophoresis, 2009, 30: 1059-1065
[68] Zhao S L, Lan X H, Liu Y M. Electrophoresis, 2009, 30: 2676-2680
[69] Liu Q C, Wu J Q, Tian J, Zhang C L, Gao J J, Latep N, Ge Y, Qin W D. Talanta, 2012, 97: 193-198

[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[4] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[5] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[6] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[7] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[8] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[9] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[10] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[11] 朱本占, 谢琳娜, 沈忱, 高慧颖, 朱丽雅, 毛莉. 卤代芳烃化学发光的结构效应、分子机制及其应用[J]. 化学进展, 2017, 29(9): 930-942.
[12] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[13] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[14] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[15] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.