English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2188-2202 DOI: 10.7536/PC201119 前一篇   后一篇

• 综述 •

金属配位聚氨酯

吴金柯1, 王建军1,*(), 戴礼兴1, 孙东豪1, 陈嘉嘉2,*()   

  1. 1 苏州大学材料与化学化工学部 苏州 215123
    2 厦门大学化学化工学院 厦门 361005
  • 收稿日期:2020-11-16 修回日期:2021-01-12 出版日期:2021-03-04 发布日期:2021-03-04
  • 通讯作者: 王建军, 陈嘉嘉
  • 基金资助:
    国家自然科学基金项目(21975211); 中央高校基本科研业务费(20720190035); 厦门大学“南强青年拔尖人才计划”资助

Metal Coordination Polyurethanes

Jinke Wu1, Jianjun Wang1(), Lixing Dai1, Donghao Sun1, Jiajia Chen2()   

  1. 1 College of Chemistry, Chemical Engineering and Materials Science, Soochow University,Suzhou 215123, China
    2 College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 361005, China
  • Received:2020-11-16 Revised:2021-01-12 Online:2021-03-04 Published:2021-03-04
  • Contact: Jianjun Wang, Jiajia Chen
  • Supported by:
    the National Natural Science Foundation of China(21975211); the Fundamental Research Funds for the Central Universities(20720190035); and the Nanqiang Young Top-notch Talent Fellowship from Xiamen University.

金属配位聚氨酯(Metal coordination polyurethanes,MCP)是一维配体聚氨酯(Polyurethanes,PU)阵列通过与零维配位中心金属离子或离子簇的配位作用,形成的一维、二维或三维结构的金属有机组装体。这些金属有机组装体既保留有机高分子PU的特征,又兼备无机金属的性能,因而受到国内外研究人员的广泛关注。由于金属与高分子互动产生的超结构凝聚态,可进一步赋予MCP自修复、记忆、抗菌和荧光等特殊功能,从而成为近年来的研究热点之一,但尚未有关于MCP的专题报道。本文从分子组成结构探究PU与金属(碱土金属、过渡金属、稀土金属和其他金属)相互作用的途径与方法,阐述其微观结构与宏观性能的关联,并对MCP功能材料的发展和应用做出展望。

Coordination of carboxylate, sulphonate, pyridine, Schiff base, and other groups in ligand polyurethanes with metal ions or ionic clusters to prepare metal coordination polyurethanes

Metal coordination polyurethanes (MCP) are the aggregates of metal-polyurethane complexes that form between a zero-dimensional metal ion or ionic cluster center with the surrounding array of one-dimension ligand polyurethanes (PU). Those metal-polyurethane complexes exhibit interesting physical characteristics, including thermoplasticity, elasticity, electrical conductivity, fluorescence, etc. The coordination interactions between metal ions and PU lead to formation of supramolecular aggregates, which endow the PU with advanced functionalities at high structural hierarchies across disciplinary boundaries such as self-repair, memory, antibacterial, luminescent, and so on. The orthogonal metal-polymer self-assembly is an ongoing theme in coordination chemistry, and thus brings MCP widely attention from various research areas in recent years. However, there has been not yet a review on this related topic of MCP. Herein, this review summarizes the ways and methods of the interaction between PU and metals from the molecular compositions and structures, and provides a comprehensive discussion on the coordination structures, as well as the related properties and applications. Finally, the prospective on the future development and application of MCP is presented.

Contents

1 Introduction

2 Alkali earth metal coordination polyurethanes

3 Transition metal coordination polyurethanes

4 Rare earth metal coordination polyurethanes

5 Other metal coordination polyurethanes

6 Conclusion and outlook

()
图1 MCP的三种典型制备方法及6种常见结构
Fig.1 Three typical preparation methods and six general structures of MCP
表1 羧酸根螯合金属的二元醇或二元胺
Table 1 Diols and diamines of metals chelated by carboxylates
图2 PU离聚物中离子簇的示意图
Fig.2 Schematic representation of ionic aggregates in PU ionomers
图3 吡啶侧基PU结构示意图[41]
Fig.3 Schematic of PU with pendant pyridine group[41]
图4 Ca2+在PU薄膜表面与配位基团螯合的示意图[42]
Fig.4 Schematic shows the Ca2+ coordinated by coordination groups on the surface of polyurethane membranes[42]. Copyright 2015, Wiley
图5 Ca2+与邻苯二酚基团配位制备Ca2+配位聚氨酯[44]
Fig.5 Preparation of Ca2+ coordination polyurethanes by coordination of Ca2+ with terminal catechol groups[44]. Copyright 2019, Wiley
图6 (a)磺化聚氨酯的硬段结构[48⇓~50]和(b)PU中羧酸根与Ni2+、Cu2+、Zn2+的螯合结构[51]
Fig.6 Structures of (a) hard segment of the sulfonated PU[48⇓~50], and (b) coordination between carboxylate in PU and Ni2+, Cu2+, Zn2+ [51]
图7 (a)Fe3+、(b)Zn2+和(c)Tb3+分别与二酰胺吡啶的配位结构;(d~f)含Fe3+-二酰胺吡啶配位结构PU的自修复行为[65]
Fig.7 Coordination structures of (a) Fe3+, (b) Zn2+ and (c) Tb3+ with diamidopyridine. (d~f) Healing properties of PU containing Fe3+-diamidopyridine coordination structure[65]. Copyright 2019, Wiley
图8 主链含(a)三联吡啶配体[68]和(b)2,6-双(1,2,3-三唑-4-基)吡啶基团[70,71]PU的结构
Fig.8 Chemical structures of PU with (a) terpyridine ligand[68] and (b) 2,6-bis(1,2,3-trizol-4-yl)pyridine ligand[70,71] in main chain
表2 席夫碱二醇或二胺的过渡金属配合物
Table 2 Transition metal coordinated Schiff base diol or diamine
图9 Cu2+配位丁二酮肟扩链的PU (Cu-DOU-PU)构筑自修复可拉伸电子器件[83]
Fig.9 Constructing self-healing and stretchable electronics with Cu2+ coordination dimethylglyoxime-extended PU (Cu-DOU-PU)[83]. Copyright 2019, Wiley
图10 pH调控邻苯二酚侧基与Fe3+的配位个数[85]
Fig.10 The number of pendant catechol groups coordinated with Fe3+ is regulated by pH[85]
图11 含吡唑基配合物PU的结构[87]
Fig.11 Structures of pyrazole-based coordination polyurethanes[87]
图12 PU中可能的配位连接点[104,105]
Fig.12 Possible coordination junction points of PU[104,105]
图13 通过PU中的羟基和羰基与Mn2+、Zn2+、Ni2+配位合成MCP的示意图[106,107]
Fig.13 Schematic for the synthesis of MCP through the coordination of hydroxyl and carbonyl in PU with Mn2+、Zn2+、Ni2+ [106, 107]
表3 用于制备稀土金属配位聚氨酯的稀土羧酸根螯合物
Table 3 The rare earth chelates of carboxylate for preparing rare earth metal coordination polyurethanes
图14 (a)Ln3+与三联吡啶配位的结构示意图,(b)不同Eu3+和Tb3+摩尔比的稀土配位聚氨酯在紫外光下的发光行为[116]
Fig.14 (a) Schematics of the coordination structure of Ln3+ with terpyridine, and (b) luminescent behavior of rare earth coordination polyurethanes with different molar ratio of Eu3+ and Tb3+ under ultraviolet radiation[116]. Copyright 2020, American Chemical Society
图15 β-二酮与Eu3+的配位结构[118]
Fig.15 Coordination structure of β-diketone with Eu3+ [118]
[1]
KrÓl P. Prog. Mater. Sci., 2007, 52(6): 915.

doi: 10.1016/j.pmatsci.2006.11.001     URL    
[2]
Senthilkumar N, Luqman M. Materials Science Forum (Eds. Ai-Ahmed H). Switzerland: Trans Tech Publications, 2010, 1.
[3]
Jayakumar R, Nanjundan S, Prabaharan M. J. Macromol. Sci. C: Polym. Rev., 2005, 45(3): 231.

doi: 10.1081/MC-200067721     URL    
[4]
Jayakumar R, Nanjundan S, Prabaharan M. React. Funct. Polym., 2006, 66(3): 299.

doi: 10.1016/j.reactfunctpolym.2004.12.008     URL    
[5]
Wang L F. Eur. Polym. J., 2010, 46(12): 2372.

doi: 10.1016/j.eurpolymj.2010.09.013     URL    
[6]
Liu X H, Zhao Y, Liu Z, Wang D J, Wu J G, Xu D F. J. Mol. Struct., 2008, 892(1/3): 200.

doi: 10.1016/j.molstruc.2008.05.025     URL    
[7]
Tolstov A L, Zinchenko O V, Matyushov V F. Theor. Exp. Chem., 2015, 51(5): 333.

doi: 10.1007/s11237-015-9434-6     URL    
[8]
Leung A C W, MacLachlan M J. J. Inorg. Organomet. Polym. Mater., 2007, 17(1): 57.

doi: 10.1007/s10904-006-9092-1     URL    
[9]
Li C H, Zuo J L. Adv. Mater., 2019: 1903762.
[10]
Wang Z H, Lu X L, Sun S J, Yu C J, Xia H S. J. Mater. Chem. B, 2019, 7(32): 4876.

doi: 10.1039/C9TB00831D     URL    
[11]
Gohy J F. Coord. Chem. Rev., 2009, 253(17/18): 2214.

doi: 10.1016/j.ccr.2008.11.017     URL    
[12]
Matsuda H. J. Polym. Sci. Polym. Chem. Ed., 1974, 12(2): 455.

doi: 10.1002/pol.1974.170120216     URL    
[13]
Matsuda H. J. Polym. Sci. Polym. Chem. Ed., 1974, 12(2): 469.

doi: 10.1002/pol.1974.170120217     URL    
[14]
Matsuda H, Takechi S. J. Polym. Sci. A Polym. Chem., 1991, 29(1): 83.

doi: 10.1002/pola.1991.080290110     URL    
[15]
Nair P A, Parameswaran R. Adv. Polym. Technol., 2016, 35(3): 326.

doi: 10.1002/adv.21559     URL    
[16]
Nair P A, Ramesh P. Polym. J., 2012, 44(10): 1009.

doi: 10.1038/pj.2012.51     URL    
[17]
Nair P A, Ramesh P. J. Appl. Polym. Sci., 2011, 122(3): 1946.

doi: 10.1002/app.33906     URL    
[18]
Jayakumar R, Lee Y S, Nanjundan S. J. Appl. Polym. Sci., 2004, 92(2): 710.

doi: 10.1002/(ISSN)1097-4628     URL    
[19]
Jayakumar R, Lee Y S, Nanjundan S. J. Polym. Sci. A Polym. Chem., 2003, 41(18): 2865.

doi: 10.1002/(ISSN)1099-0518     URL    
[20]
Prasath R A, Nanjundan S, Pakula T, Klapper M. Eur. Polym. J., 2004, 40(8): 1767.

doi: 10.1016/j.eurpolymj.2004.03.007     URL    
[21]
Arun Prasath R, Nanjundan S, Pakula T, Klapper M. Polym. Degrad. Stab., 2004, 85(2): 911.

doi: 10.1016/j.polymdegradstab.2004.04.010     URL    
[22]
Jayakumar R, Lee Y S, Nanjundan S. J. Appl. Polym. Sci., 2003, 90(13): 3488.

doi: 10.1002/(ISSN)1097-4628     URL    
[23]
Jayakumar R, Nanjundan S. J. Polym. Sci. A Polym. Chem., 2004, 42(8): 1809.

doi: 10.1002/pola.20016     URL    
[24]
Jayakumar R, Rajkumar M, Nagendran R, Nanjundan S. J. Appl. Polym. Sci., 2002, 85(6): 1194.

doi: 10.1002/(ISSN)1097-4628     URL    
[25]
Jayakumar R, Lee Y S, Nanjundan S. React. Funct. Polym., 2003, 55(3): 267.

doi: 10.1016/S1381-5148(03)00017-8     URL    
[26]
Jayakumar R, Lee Y S, Rajkumar M, Nanjundan S. J. Appl. Polym. Sci., 2004, 91(1): 288.

doi: 10.1002/(ISSN)1097-4628     URL    
[27]
Arun Prasath R, Nanjundan S. Eur. Polym. J., 1999, 35(11): 1939.

doi: 10.1016/S0014-3057(99)00009-9     URL    
[28]
Jayakumar R, Nanjundan S. J. Macromol. Sci. Part A-Pure Appl. Chem., 2006, 43(6): 945.

doi: 10.1080/10601320600653822     URL    
[29]
Arun Prasath R, Vijayanand P, Nanjundan S. Polym. Int., 2000, 49(11): 1464.

doi: 10.1002/(ISSN)1097-0126     URL    
[30]
Prasath R A, Nanjundan S. J. Macromol. Sci. Part A-Pure Appl. Chem., 1998, 35(5): 821.

doi: 10.1080/10601329808002014     URL    
[31]
Jayakumar R, Nanjundan S, Rajkumar M, Nagendran R. J. Macromol. Sci. A, 2001, 38(9): 869.

doi: 10.1081/MA-100104941     URL    
[32]
Jayakumar R, Nanjundan S. Polym. J., 2003, 35(9): 734.
[33]
Jayakumar R, Prasath R A, Radhakrishnan S, Nanjundan S. J. Macromol. Sci. A, 2002, 39(8): 853.

doi: 10.1081/MA-120005805     URL    
[34]
Jayakumar R, Radhakrishnan S, Nanjundan S. React. Funct. Polym., 2003, 57(1): 23.

doi: 10.1016/j.reactfunctpolym.2003.07.001     URL    
[35]
Prasath R A, Jayakumar R, Nanjundan S. J. Macromol. Sci. A, 2000, 37(5): 469.

doi: 10.1081/MA-100101105     URL    
[36]
Jayakumar R, Nanjundan S. Eur. Polym. J., 2005, 41(7): 1623.

doi: 10.1016/j.eurpolymj.2005.02.007     URL    
[37]
Kothandaraman H, Venkatarao K, Raghavan A, Chandrasekaran V. Polym. Bull., 1985, 13(4): 353.
[38]
Rajalingam P, Radhakrishnan G. Polymer, 1992, 33(10): 2214.

doi: 10.1016/0032-3861(92)90891-Y     URL    
[39]
Rajalingam P, Radhakrishnan G, Devanathan S B, Selvy K T, Rao K V. Acta Polym., 1990, 41(11): 560.

doi: 10.1002/actp.1990.010411102     URL    
[40]
Durairaj B, Venkata Rao K. Eur. Polym. J., 1980, 16(10): 941.

doi: 10.1016/0014-3057(80)90174-3     URL    
[41]
O’Connell E M, Yang C Z, Root T W, Cooper S L. Macromolecules, 1996, 29(18): 6002.

doi: 10.1021/ma951441j     URL    
[42]
Hung K C, Hsu S H. Adv. Healthcare Mater., 2015, 4(15): 2186.

doi: 10.1002/adhm.201500374     URL    
[43]
Harrington M J, Masic A, Holten-Andersen N, Waite J H, Fratzl P. Science, 2010, 328(5975): 216.

doi: 10.1126/science.1181044     pmid: 20203014
[44]
Xu S B, Sheng D K, Liu X D, Ji F C, Zhou Y, Dong L, Wu H H, Yang Y M. Polym. Int., 2019, 68(6): 1084.

doi: 10.1002/pi.2019.68.issue-6     URL    
[45]
Zafar F, Ashraf S M, Ahmad S. J. Appl. Polym. Sci., 2008, 110(1): 584.

doi: 10.1002/app.v110:1     URL    
[46]
Song X, Li D, Li X, Gong J, Zhao Y. Advanced Materials Research (Eds. Ren N, Che L K, Jin B, Dong R, Su H). Switzerland: Trans Tech Publlications, 2012. 2015.
[47]
Wang R, Xiao Y, Lei J X. Chem. Eng. J., 2020, 390: 124586.

doi: 10.1016/j.cej.2020.124586     URL    
[48]
Ding Y S, Register R A, Yang C Z, Cooper S L. Polymer, 1989, 30(7): 1204.

doi: 10.1016/0032-3861(89)90037-2     URL    
[49]
Ding Y S, Register R A, Yang C Z, Cooper S L. Polymer, 1989, 30(7): 1213.

doi: 10.1016/0032-3861(89)90038-4     URL    
[50]
Ding Y S, Register R A, Yang C Z, Cooper S L. Polymer, 1989, 30(7): 1221.

doi: 10.1016/0032-3861(89)90039-6     URL    
[51]
Kozak N V, Kosyanchuk L F, Lipatov Y S, Nizel’skii Y N, Antonenko O I. Theor. Exp. Chem., 2000, 36(2): 82.

doi: 10.1007/BF02529023     URL    
[52]
Diaconu I, Buruiană T, Buruiană E C, Coman P. Die Angewandte Makromolekulare Chemie, 1993, 207(1): 195.

doi: 10.1002/apmc.1993.052070118     URL    
[53]
Diaconu I, Coman P, Buruiană T, Buruiană E C. Angew. Makromol. Chemie, 1993, 213(1): 73.

doi: 10.1002/apmc.1993.052130109     URL    
[54]
Diaconu I, Coman P, Buruiană T. Angew. Makromol. Chemie, 1994, 221(1): 61.

doi: 10.1002/apmc.1994.052210106     URL    
[55]
Francolini I, Ruggeri V, Martinelli A, D’Ilario L, Piozzi A. Macromol. Rapid Commun., 2006, 27(4): 233.

doi: 10.1002/(ISSN)1521-3927     URL    
[56]
Li X, Li W, Wang X L, Guo H L, Wang R J, Guo X H, Li C H, Jia X. J. Appl. Polym. Sci., 2018, 135(17): 46069.

doi: 10.1002/app.v135.17     URL    
[57]
Wang Y J, Liu Z M, Zhou C L, Yuan Y, Jiang L, Wu B, Lei J X. J. Mater. Chem. A, 2019, 7(8): 3577.

doi: 10.1039/C8TA11866C     URL    
[58]
Yang C Z, Zhang X M, O’Connell E M, Goddard R J, Cooper S L. J. Appl. Polym. Sci., 1994, 51(2): 365.

doi: 10.1002/app.1994.070510219     URL    
[59]
Shen Q D, Yang C Z. J. Polym. Sci. B Polym. Phys., 1998, 36(9): 1539.

doi: 10.1002/(ISSN)1099-0488     URL    
[60]
Zou F X, Chen H, Chen S J, Zhuo H T. J. Mater. Sci., 2019, 54(6): 5136.

doi: 10.1007/s10853-018-3179-2     URL    
[61]
Lee H T, Tsou C H, Jou C H, Huang F C, Wang M L, Suen M C. Polym. Bull., 2014, 71(11): 2749.

doi: 10.1007/s00289-014-1222-2     URL    
[62]
Tsou C H, Lee H T, Hung W S, Guzman M, Chen S T, Suen M C, Wicaksono S T. Polym. Bull., 2017, 74(4): 1121.

doi: 10.1007/s00289-016-1767-3     URL    
[63]
Wu C L, Tsou C Y, Chiu S H, Suen M C, Kao C H. Eur. J. Mater. Sci. Eng., 2016, 1(1): 39.
[64]
Tsou C H, Lee H T, Hung W S, Wang C C, Shu C C, Suen M C, De Guzman M. Polymer, 2016, 85: 96.

doi: 10.1016/j.polymer.2016.01.042     URL    
[65]
Wang Z H, Xie C, Yu C J, Fei G X, Wang Z H, Xia H S. Macromol. Rapid Commun., 2018, 39(6): 1700678.

doi: 10.1002/marc.v39.6     URL    
[66]
Sun Guo, Zhang Li, Liu Zhu, Li Wei. Polymers, 2019, 11(8): 1320.

doi: 10.3390/polym11081320     URL    
[67]
Lin C H, Sheng D K, Liu X D, Xu S B, Ji F C, Dong L, Zhou Y, Yang Y M. J. Polym. Sci. A: Polym. Chem., 2019, 57(22): 2228.

doi: 10.1002/pola.v57.22     URL    
[68]
Koohmareh G A, Sharifi M. Des. Monomers Polym., 2010, 13(2): 123.

doi: 10.1163/138577210X12634696333235     URL    
[69]
Zheng Q F, Ma Z Q, Gong S Q. J. Mater. Chem. A, 2016, 4(9): 3324.

doi: 10.1039/C5TA10694J     URL    
[70]
Yuan J C, Fang X L, Zhang L X, Hong G N, Lin Y J, Zheng Q F, Xu Y Z, Ruan Y H, Weng W G, Xia H P, Chen G H. J. Mater. Chem., 2012, 22(23): 11515.

doi: 10.1039/c2jm31347b     URL    
[71]
Hong G N, Zhang H, Lin Y J, Chen Y J, Xu Y Z, Weng W G, Xia H P. Macromolecules, 2013, 46(21): 8649.

doi: 10.1021/ma4017532     URL    
[72]
Chen L, Xu H, Zhu Y P, Yang C Z, Shen G. Polym. J., 1996, 28(6): 481.

doi: 10.1295/polymj.28.481     URL    
[73]
Chen L, Xu H, Yang C Z, Hu T D, Xue Y N. Polym. Adv. Technol., 1997, 8(6): 335.
[74]
Chen L, Xu H, Yu X H, Zhu Y P, Yang C Z. J. Polym. Sci. A Polym. Chem., 1996, 34(5): 721.

doi: 10.1002/(ISSN)1099-0518     URL    
[75]
Senthilkumar N, Narasimhaswamy T, Kim I J. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2012, 32(8): 2258.

doi: 10.1016/j.msec.2012.06.008     URL    
[76]
Kamacı M, Kaya I ˙. J. Inorg. Organomet. Polym. Mater., 2013, 23(5): 1159.

doi: 10.1007/s10904-013-9908-8     URL    
[77]
Senthilkumar N, Raghavan A, Nasar A S. Macromol. Chem. Phys., 2005, 206(24): 2490.

doi: 10.1002/(ISSN)1521-3935     URL    
[78]
Hasnain S, Zulfequar M, Nishat N. J. Coord. Chem., 2011, 64(6): 952.

doi: 10.1080/00958972.2011.559230     URL    
[79]
Hasnain S, Nishat N. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2012, 95: 452.

doi: 10.1016/j.saa.2012.04.018     URL    
[80]
Tong W Y, Archer R D. Inorg. Chem., 1992, 31(15): 3332.

doi: 10.1021/ic00041a033     URL    
[81]
Chantarasiri N, Damrongkosit T, Jangwong W, Sridaeng D, Suebphan S. Eur. Polym. J., 2004, 40(8): 1867.

doi: 10.1016/j.eurpolymj.2004.04.009     URL    
[82]
Khamma N, Krisiri D, Tachaprasertporn P, Chantarasiri N. J. Appl. Polym. Sci., 2008, 108(1): 245.

doi: 10.1002/(ISSN)1097-4628     URL    
[83]
Zhang L Z, Liu Z H, Wu X L, Guan Q B, Chen S, Sun L J, Guo Y F, Wang S L, Song J C, Jeffries E M, He C L, Qing F L, Bao X G, You Z W. Adv. Mater., 2019, 31(23): 1901402.

doi: 10.1002/adma.v31.23     URL    
[84]
Liu Z H, Zhang L Z, Guan Q B, Guo Y F, Lou J M, Lei D, Wang S L, Chen S, Sun L J, Xuan H X, Jeffries E M, He C L, Qing F L, You Z W. Adv. Funct. Mater., 2019, 29(28): 1901058.

doi: 10.1002/adfm.v29.28     URL    
[85]
Sun P Y, Wang J, Yao X, Peng Y, Tu X X, Du P F, Zheng Z, Wang X L. ACS Appl. Mater. Interfaces, 2014, 6(15): 12495.

doi: 10.1021/am502106e     URL    
[86]
Xia N N, Xiong X M, Wang J H, Rong M Z, Zhang M Q. Chem. Sci., 2016, 7(4): 2736.

doi: 10.1039/C5SC03483C     URL    
[87]
HollÓ B B, Ristić I, Budinski-Simendić J, Cakić S, Szilágyi I M, SzÉcsÉnyi K M. J. Therm. Anal. Calorim., 2018, 132(1): 215.

doi: 10.1007/s10973-017-6904-1     URL    
[88]
Acharya V, Ratna Prabha C, Narayanamurthy C. Biomaterials, 2004, 25(19): 4555.

pmid: 15120500
[89]
Georgoussis G, Kanapitsas A, Pissis P, Savelyev Y V, Veselov V Y, Privalko E G. Eur. Polym. J., 2000, 36(6): 1113.

doi: 10.1016/S0014-3057(99)00177-9     URL    
[90]
Kalogeras I M, Roussos M, Vassilikou-Dova A, Spanoudaki A, Pissis P, Savelyev Y V, Shtompel V I, Robota L P. Eur. Phys. J. E, 2005, 18(4): 467.

pmid: 16331340
[91]
Ochiai B, Kamiya M, Endo T. J. Polym. Sci. A Polym. Chem., 2012, 50(17): 3493.

doi: 10.1002/pola.v50.17     URL    
[92]
Kositsyna O. Technol. Transf.: Fundam. Princ. Innov. Tech. Solut., 2019, 3: 64.
[93]
Moroi G, Ciobanu C. J. Anal. Appl. Pyrolysis, 2003, 70(1): 87.

doi: 10.1016/S0165-2370(02)00097-9     URL    
[94]
Moroi G. J. Anal. Appl. Pyrolysis, 2004, 71(2): 485.

doi: 10.1016/S0165-2370(03)00133-5     URL    
[95]
Moroi G N. J. Polym. Res., 2012, 19(12): 1.

doi: 10.1007/s10965-012-0001-8     URL    
[96]
Moroi G N. Macromol. Symp., 2009, 279(1): 29.

doi: 10.1002/masy.v279:1     URL    
[97]
Moroi G, Ciobanu C. Polym. Degrad. Stab., 2002, 78(2): 287.

doi: 10.1016/S0141-3910(02)00173-8     URL    
[98]
Moroi G N. Polym. Degrad. Stab., 2010, 95(3): 289.

doi: 10.1016/j.polymdegradstab.2009.11.027     URL    
[99]
Moroi G. React. Funct. Polym., 2008, 68(1): 268.

doi: 10.1016/j.reactfunctpolym.2007.09.007     URL    
[100]
Moroi G, Ciobanu C. Thermochimica Acta, 2002, 3851-2: 153.
[101]
Lu H B, Lu C R, Huang W M, Leng J S. Smart Mater. Struct., 2015, 24(3): 035018.

doi: 10.1088/0964-1726/24/3/035018     URL    
[102]
Lu H B, Lu C R, Huang W M, Leng J S. Smart Mater. Struct., 2016, 25(10): 105003.

doi: 10.1088/0964-1726/25/10/105003     URL    
[103]
Wang Z H, Yang Y, Burtovyy R, Luzinov I, Urban M W. J. Mater. Chem. A, 2014, 2(37): 15527.

doi: 10.1039/C4TA02417F     URL    
[104]
Kozak N, Nizelskii Y, Mnikh N, Shtompel V, Grischuk O. Macromol. Symp., 2006, 243(1): 247.

doi: 10.1002/(ISSN)1521-3900     URL    
[105]
Nizelskii Y, Kozak N. J. Macromol. Sci. B, 2007, 46(1): 97.

doi: 10.1080/00222340601044219     URL    
[106]
Khan S, Laxmi L, Zafar F, Nishat N. RSC Adv., 2016, 6(55): 50070.

doi: 10.1039/C6RA00849F     URL    
[107]
Laxmi, Khan S, Kareem A, Zafar F, Nishat N. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2018, 188: 400.

doi: 10.1016/j.saa.2017.07.032     URL    
[108]
Kanazawa Y, Kamitani M. J. Alloys Compd., 2006, 408-412: 1339.
[109]
Xu G X,. Rare Earths. 2nd ed. Beijing:Metallurgical Industry Press, 1995. 29.(徐光宪. 稀土. 第二版. 北京: 冶金工业出版社, 1995. 29.).
[110]
Fang S M, Wang C, Hu M, Wang P Y, Zhou L M, Gao L J, Liu C S. J. Appl. Polym. Sci., 2012, 125(5): 3404.

doi: 10.1002/app.v125.5     URL    
[111]
Gao L J, Li C, Wang C Z, Cui J, Zhou L M, Fang S M. J. Lumin., 2019, 212: 328.

doi: 10.1016/j.jlumin.2019.02.055     URL    
[112]
Fiedler T, Hilder M, Junk P C, Kynast U H, Lezhnina M M, Warzala M. Eur. J. Inorg. Chem., 2007, 2007(2): 291.

doi: 10.1002/ejic.v2007:2     URL    
[113]
Luo Y T, Zhao A H, Wu C P. Chinese Rare Earth, 2001, 22(1): 9.
( 罗云婷, 赵爱华, 吴承佩. 稀土, 2001, 22(1): 9.)
[114]
Zhou S X, Yin Y J, You B, Wu L M, Chen M. Macromol. Chem. Phys., 2007, 208(24): 2677.

doi: 10.1002/(ISSN)1521-3935     URL    
[115]
Zhou L M, Gao L J, Fang S M, Sun G H, Hu M, Guo L Q, Han C, Zhang L C. J. Appl. Polym. Sci., 2012, 125(1): 690.

doi: 10.1002/app.v125.1     URL    
[116]
Yang J, Zhang Z H, Yan Y Q, Liu S, Li Z Q, Wang Y G, Li H R. ACS Appl. Mater. Interfaces, 2020, 12(11): 13239.

doi: 10.1021/acsami.9b20582     URL    
[117]
Sheng K, Wang J, Li Y, Wang Y, Xu M, Liu A. Advanced Materials Research (Eds. Sung W P, Chen R). Switzerland: Trans Tech Publlications, 2014. 247.
[118]
Zhang Q H, Niu S M, Wang L, Lopez J, Chen S C, Cai Y F, Du R C, Liu Y X, Lai J C, Liu L, Li C H, Yan X Z, Liu C G, Tok J B H, Jia X D, Bao Z N. Adv. Mater., 2018, 30(33): 1801435.

doi: 10.1002/adma.v30.33     URL    
[119]
Shi C L, Chen L Q, Qiu F X, Yang D Y. Sci. Technol. Chem. Ind., 2008, 16(5): 9.
( 史成亮, 陈丽琴, 邱凤仙, 杨冬亚. 化工科技, 2008, 16(5): 9.)
[120]
Qiu F X, Shi C L, Chen L Q, Yang D Y. New Chemical Materials, 2008, 36(3): 34.
( 邱凤仙, 史成亮, 陈丽琴, 杨冬亚, 化工新型材料, 2008, 36(3): 34.)
[121]
Liu L, Zhang X J, Zhang L Q. China Synthetic Rubber Industry, 2002, 25(2): 112.
( 刘力, 张秀娟, 张立群. 合成橡胶工业, 2002, 25(2): 112.)
[122]
Liu X H, Zhao Y, Liu Z, Wang D J, Wu J G, Xu D F. Chem. J. Chin. Univ., 2008, 29(10): 2096. (in Chinese)
( 刘新海, 赵莹, 刘智, 王笃金, 吴瑾光, 徐端夫. 高等学校化学学报, 2008, 29(10): 2096.)
[123]
Ciobanu C, Stoica E, Cascaval C N, Rosu D, Rosu L, State M, Emandi A, Nemes I, Petrescu F. J. Appl. Polym. Sci., 2007, 103(2): 659.

doi: 10.1002/(ISSN)1097-4628     URL    
[1] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[2] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[3] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[4] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[5] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[6] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[7] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[8] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[9] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[10] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[11] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[12] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[13] 曲树璋, 张韬毅, 王伟. 氮配位单茂金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(7): 929-938.
[14] 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383.
[15] 李娜, 常泽, 陈强, 尹佳成, 卜显和. 动态配位空间的构筑与调控[J]. 化学进展, 2019, 31(1): 10-20.
阅读次数
全文


摘要