English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2173-2187 DOI: 10.7536/PC201053   后一篇

• 综述 •

金属有机骨架材料的复合成型

董秀婷*, 张文*(), 赵颂*, 刘新磊, 王宇新   

  1. 天津大学化工学院 天津市膜科学与海水淡化重点实验室 化学工程联合国家重点实验室 天津 300350
  • 收稿日期:2020-10-29 修回日期:2021-01-31 出版日期:2021-03-04 发布日期:2021-03-04
  • 通讯作者: 董秀婷, 张文, 赵颂
  • 基金资助:
    国家自然科学基金项目(11705126); 国家自然科学基金项目(22076137)

Shaping Methods for Metal-Organic Framework Composites

Xiuting Dong, Wen Zhang(), Song Zhao, Xinlei Liu, Yuxin Wang   

  1. Tianjin Key Laboratory of Membrane Science & Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Tianjin University,Tianjin 300350, China
  • Received:2020-10-29 Revised:2021-01-31 Online:2021-03-04 Published:2021-03-04
  • Contact: Xiuting Dong, Wen Zhang, Song Zhao
  • Supported by:
    the National Natural Science Foundation of China(11705126); the National Natural Science Foundation of China(22076137)

金属有机骨架材料(MOFs)是由有机配体与金属离子(簇)配位而成的有序杂化多孔框架晶体材料,具有比表面积高、密度低、孔结构可调、配体可设计及易修饰等特性,已广泛应用于分离、催化、传感和药物递送等研究领域。MOFs本身以粉体形式存在,在实际应用中不易于加工处理和回收再利用,甚至会导致粉体污染。因此对MOFs粉末进行复合成型,制备成复合颗粒或者膜材料,有利于推进其工业应用。本文按照MOFs制备和成型的先后顺序,对MOFs复合微珠、薄膜和混合基质膜成型体的制备方法进行综述,对推进MOFs成型体的大规模制备以及开发新的MOFs成型方法提供技术参考。

Metal-organic frameworks (MOFs) are porous crystal materials formed by the self-assembling between organic ligands and metal ions (clusters). With the advantages of high specific surface areas, low densities, adjustable pore structures and easy modification, they have been used in the research fields of separation, catalysis, sensing and drug delivery. MOFs are often isolated as tiny powders, and this form is not suitable for industrial applications due to operating problems, such as dirtiness, mass loss, and difficulties in recycling. To address this issue, several composite materials containing MOFs have been developed with various shaping methods. In this review, we discuss the preparation methods to shape MOFs into beads, thin films and membranes, as well as their potential industrial applications. This paper could provide a reference for developing novel methods for shaping of MOFs and techniques to fabricate large-scale MOF composites.

Contents

1 Introduction

2 MOF beads

2.1 Beads prepared by MOF powders

2.2 MOFs growth in beads

3 MOF films

3.1 Films prepared by MOF powders

3.2 MOFs growth on films

4 MOF mixed-matrix membranes

4.1 Membranes prepared by MOF powders

4.2 MOFs growth in membranes

5 Conclusion and outlook

()
表1 挤压造粒法制备MOFs成型体的比表面积变化
Table 1 The specific surface area of different MOF composites by granulation method
图1 典型的3D打印工作流程[36]
Fig.1 Typical process workflow based on 3D printing[36], Copyright 2020, ACS
图2 微珠制备的相转化法及溶剂交换原理图[20]
Fig.2 Schematic diagrams of the phase inversion method for polymer sphere preparation[20], Copyright 2019, ACS
表2 相转移法制备MOFs成型体性质比较
Table 2 The specific surface area of molded MOF composites by phase inversion methods
图3 共混或交联法进行MOFs聚合物复合[49]
Fig.3 Combinations of MOFs with polymers form either mixed or covalent composites[49], Copyright 2020, ACS
图4 钙诱导丙烯酸和海藻酸交联制备多孔MOFs微球[50]
Fig.4 Scheme of MOF-polymer bead preparation from the gelation of Ca2+, PAA and alginate[50], Copyright 2020, ACS
表3 聚合物交联法制备MOFs成型体性质比较
Table 3 The specific surface area of molded MOF composites by polymer crosslinking method
图5 配体交换法制备MOFs杂化聚合物[51]
Fig.5 Polymer-MOF composites through surface-selective ligand exchange[51], Copyright 2020, ACS
图6 (a)含咪唑酯MOFs原位生长氧化铝示意图[14]; (b)HKUST-1 @γ-Al2O3复合材料制备示意图[13]
Fig.6 (a) Postulated anchoring of imidazolate-based MOFs on alumina[14], Copyright 2016, ACS; (b) The Structure of HKUST-1@γ-Al2O3 composite[13], Copyright 2010, RSC
图7 蜘蛛网状ZIF-8整体泡沫制备示意图[53]
Fig.7 Schematic diagram for a spiderweb-like ZIF-8 mono-lithic foam[53], Copyright 2020, Wiley
图8 飞秒脉冲激光沉积制备的ZIF-8膜示意图[11]
Fig.8 ZIF-8 films prepared by femtosecond pulsed-laser deposition[11], Copyright 2017, ACS
图9 (a)原位合成UiO-66@Al2O3示意图;(b)UiO-66@Al2O3膜截面图和(c)纵向剖面图[68]
Fig.9 (a) Diagram of in-situ fabrication for UiO-66@Al2O3; SEM images of (b) cross section and (c) top view of the UiO-66@Al2O3[68], Copyright 2015, ACS
图10 (a)反应播种法制备MIL-53/α-Al2O3膜[75];(b)逐层浸渍组装法制备HKUST-1/α-Al2O3膜[76];(c)共价辅助接种法制备ZIF-8/PI复合膜[77];(d)取向播种法联用可控二次生长法制备择优取向的NH2-MIL-125膜[78]
Fig.10 (a) Reactive seeding method for the preparation of continuous MOF films[75], Copyright 2011, RSC; (b) Step-by-step seeding procedure for preparing HKUST-1 films[76], Copyright 2011, ACS; (c) Fabrication procedure of ZIF-8/PI by covalent-assisted seeding methods[77], Copyright 2019, Wiley; (d) Preparation of oriented NH2-MIL-125(Ti) films by combining oriented seeding and controlled in-plane secondary growth[78], Copyright 2018, Wiley
图11 (a)在ZnAl-LDH层修饰的γ-Al2O3基底上原位生长ZIF-8膜[60];(b)GO-ZnO层限域取向生长Zn2(bIm)4膜[64];(c)原子层沉积和配体气相处理制备ZIF膜示意图[79];(d)利用氢氧化铜纳米链制备自支撑HKUST-1膜[85]
Fig.11 (a) Scheme of in situ growth of ZIF-8 on a ZnAl-LDH buffer layer-modified γ-Al2O3[60], Copyright 2014, Wiley; (b) Scheme of the preparation of oriented Zn2(bIm)4 membranes by ZnO self-conversion growth in a GO confined space[64], Copyright 2018, RSC; (c) Schematic of ZIF membranes made by ligand-induced permselectivation[79]; (d) Synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands[85], Copyright 2013, RSC
图12 (a)干燥粉体和直接液相法制备ZIF-8@PVA膜[99];(b)聚合物刷修饰MOFs前后的界面相互作用示意图[100];(c)利用MOFs中间层构筑双界面制膜示意图[101]
Fig.12 (a) Preparation of ZIF-8@PVA from ZIF-8 suspensions with and without drying[99], Copyright 2016, Wiley; (b) Interfacial interaction in a traditional and a polymer brush modified MMM[100], Copyright 2018, ACS; (c) MOF-801@Ni-MOF-74 MMMs with a dual-interfacial engineering approach[101], Copyright 2020, ACS
图13 (a)UiO-66-NH2膜后合成修饰示意图[112];(b)可聚合的Ln-MOFs与甲基丙烯酸丁酯单体聚合为杂化膜[113];(c)喷雾自组装技术辅助合成ZIF-8-PDMS复合膜示意图[114]
Fig.13 (a) Postsynthetic modification of UiO-66-NH2 and subsequent polymerization[112], Copyright 2015, Wiley; (b) Copolymerization of polymerizable Ln-MOFs with butyl methacrylate monomers into polyMOF membrane[113], Copyright 2014, Wiley; (c) Formation of the ZIF-8-PDMS composite membrane by the simultaneous spray self-assembly technique[114], Copyright 2014, Wiley
图14 (a)原位生长UiO-66-MMM膜示意图[116];(b)ZIF-8 @MMMs膜合成示意图[117]
Fig.14 (a) Fabrication method for MMM with in situ MOF growth[116], Copyright 2018, ACS; (b) Preparation procedure of ZIF-8 @MMMs[117], Copyright 2018, Elsevier
[1]
Liu X L, Wang X R, Kapteijn F. Chem. Rev., 2020, 120(16): 8303.

doi: 10.1021/acs.chemrev.9b00746     URL    
[2]
Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112(2): 673.

doi: 10.1021/cr300014x     URL    
[3]
Kalaj M, Bentz K C, Ayala S, Palomba J M, Barcus K S, Katayama Y, Cohen S M. Chem. Rev., 2020, 120(16): 8267.

doi: 10.1021/acs.chemrev.9b00575     pmid: 31895556
[4]
Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergström L. J. Eur. Ceram. Soc., 2014, 34(7): 1643.

doi: 10.1016/j.jeurceramsoc.2014.01.008     URL    
[5]
Valizadeh B, Nguyen T N, Stylianou K C. Polyhedron, 2018, 145: 1.

doi: 10.1016/j.poly.2018.01.004     URL    
[6]
Liu X M, Xie L H, Wu Y F. Inorg. Chem. Front., 2020, 7(15): 2840.

doi: 10.1039/C9QI01564G     URL    
[7]
Kim P J, You Y W, Park H, Chang J S, Bae Y S, Lee C H, Suh J K. Chem. Eng. J., 2015, 262: 683.

doi: 10.1016/j.cej.2014.09.123     URL    
[8]
Valekar A H, Cho K H, Lee U H, Lee J S, Yoon J W, Hwang Y K, Lee S G, Cho S J, Chang J S. RSC Adv., 2017, 7(88): 55767.

doi: 10.1039/C7RA11764G     URL    
[9]
Moreira M A, Santos J C, Ferreira A F P, Loureiro J M, Ragon F, Horcajada P, Shim K E, Hwang Y K, Lee U H, Chang J S, Serre C, Rodrigues A E. Langmuir, 2012, 28(13): 5715.

doi: 10.1021/la3004118     URL    
[10]
Liu D, Purewal J J, Yang J, Sudik A, Maurer S, Mueller U, Ni J, Siegel D J. Int. J. Hydrog. Energy, 2012, 37(7): 6109.

doi: 10.1016/j.ijhydene.2011.12.129     URL    
[11]
Fischer D, von Mankowski A, Ranft A, Vasa S K, Linser R, Mannhart J, Lotsch B V. Chem. Mater., 2017, 29(12): 5148.

doi: 10.1021/acs.chemmater.7b00611     URL    
[12]
Zhao Z P, Zuhra Z, Qin L B, Zhou Y S, Zhang L J, Tang F, Mu C C. Fuel Process. Technol., 2018, 176: 276.

doi: 10.1016/j.fuproc.2018.03.037     URL    
[13]
Qin L B, Zhou Y S, Li D Q, Zhang L J, Zhao Z P, Zuhra Z, Mu C C. Ind. Eng. Chem. Res., 2016, 55(27): 7249.

doi: 10.1021/acs.iecr.6b01001     URL    
[14]
Aguado S, Canivet J, Farrusseng D. Chem. Commun., 2010, 46(42): 7999.

doi: 10.1039/c0cc02045a     URL    
[15]
Kim J, Kim S H, Yang S T, Ahn W S. Microporous Mesoporous Mater., 2012, 161: 48.

doi: 10.1016/j.micromeso.2012.05.021     URL    
[16]
Finsy V, Ma L, Alaerts L, de Vos D E, Baron G V, Denayer J F M. Microporous Mesoporous Mater., 2009, 120(3): 221.

doi: 10.1016/j.micromeso.2008.11.007     URL    
[17]
Taddei M, McPherson M J, Gougsa A, Lam J, Sewell J, Andreoli E. Inorganics, 2019, 7(9): 110.

doi: 10.3390/inorganics7090110     URL    
[18]
Kuo Y C, Pal S, Li F Y, Lin C H. Chem. Asian J., 2019, 14(20): 3675.

doi: 10.1002/asia.v14.20     URL    
[19]
Del Rio M, Palomino Cabello C, Gonzalez V, Maya F, Parra J B, Cerdà V, Turnes Palomino G. Chem. Eur. J., 2016, 22(33): 11770.

doi: 10.1002/chem.201601329     URL    
[20]
Zhao Q, Zhu L, Lin G H, Chen G Y, Liu B, Zhang L, Duan T, Lei J H. ACS Appl. Mater. Interfaces, 2019, 11(45): 42635.

doi: 10.1021/acsami.9b15421     URL    
[21]
Abbasi Z, Shamsaei E, Fang X Y, Ladewig B, Wang H T. J. Colloid Interface Sci., 2017, 493: 150.

doi: 10.1016/j.jcis.2017.01.006     URL    
[22]
Spjelkavik A I, Aarti, Divekar S, Didriksen T, Blom R. Chem. Eur. J., 2014,
[23]
Zhao R, Ma T T, Zhao S, Rong H Z, Tian Y Y, Zhu G S. Chem. Eng. J., 2020, 382: 122893.

doi: 10.1016/j.cej.2019.122893     URL    
[24]
Liu L J, Yang W T, Gu D X, Zhao X J, Pan Q H. Front. Chem., 2019, 7: 607.

doi: 10.3389/fchem.2019.00607     URL    
[25]
Lee D W, Didriksen T, Olsbye U, Blom R, Grande C A. Sep. Purif. Technol., 2020, 235: 116182.

doi: 10.1016/j.seppur.2019.116182     URL    
[26]
Muley S, Nandgude T, Poddar S. Asian J. Pharm. Sci., 2016, 11(6): 684.
[27]
Charkhi A, Kazemeini M, Ahmadi S J, Kazemian H. Powder Technol., 2012, 231: 1.

doi: 10.1016/j.powtec.2012.06.041     URL    
[28]
Thompson M R. Drug Dev. Ind. Pharm., 2015, 41(8): 1223.

doi: 10.3109/03639045.2014.983931     pmid: 25402966
[29]
Khabzina Y, Dhainaut J, Ahlhelm M, Richter H J, Reinsch H, Stock N, Farrusseng D. Ind. Eng. Chem. Res., 2018, 57(24): 8200.

doi: 10.1021/acs.iecr.8b00808     URL    
[30]
Mallick A, Mouchaham G, Bhatt P M, Liang W B, Belmabkhout Y, Adil K, Jamal A, Eddaoudi M. Ind. Eng. Chem. Res., 2018, 57(49): 16897.

doi: 10.1021/acs.iecr.8b03937     URL    
[31]
Ren J W, Musyoka N M, Langmi H W, Swartbooi A, North B C, Mathe M. Int. J. Hydrog. Energy, 2015, 40(13): 4617.

doi: 10.1016/j.ijhydene.2015.02.011     URL    
[32]
Grande C A, Águeda V I, Spjelkavik A, Blom R. Chem. Eng. Sci., 2015, 124: 154.

doi: 10.1016/j.ces.2014.06.048     URL    
[33]
Cousin-Saint-Remi J, Finoulst A L, Jabbour C, Baron G V, Denayer J F M. Microporous Mesoporous Mater., 2020, 304: 109322.

doi: 10.1016/j.micromeso.2019.02.009     URL    
[34]
Molefe L Y, Musyoka N M, Ren J W, Langmi H W, Ndungu P G, Dawson R, Mathe M. J. Mater. Sci., 2019, 54(9): 7078.

doi: 10.1007/s10853-019-03367-1     URL    
[35]
Iacomi P, Lee U H, Valekar A H, Chang J S, Llewellyn P L. RSC Advances, 2019, 13: 7128.
[36]
Dhainaut J, Bonneau M, Ueoka R, Kanamori K, Furukawa S. ACS Appl. Mater. Interfaces, 2020, 12(9): 10983.

doi: 10.1021/acsami.9b22257     URL    
[37]
Halevi O, Tan J M R, Lee P S, Magdassi S. Adv. Sustainable Syst., 2018, 2(2): 1700150.

doi: 10.1002/adsu.v2.2     URL    
[38]
Kreider M C, Sefa M, Fedchak J A, Scherschligt J, Bible M, Natarajan B, Klimov N N, Miller A E, Ahmed Z, Hartings M R. Polym. Adv. Technol., 2018, 29(2): 867.

doi: 10.1002/pat.v29.2     URL    
[39]
Liu D S, Jiang P, Li X C, Liu J X, Zhou L C, Wang X L, Zhou F. Chem. Eng. J., 2020, 397: 125392.

doi: 10.1016/j.cej.2020.125392     URL    
[40]
Lefevere J, Claessens B, Mullens S, Baron G, Cousin-Saint-remi J, Denayer J F M. ACS Appl. Nano Mater., 2019, 2(8): 4991.

doi: 10.1021/acsanm.9b00934    
[41]
Evans K A, Kennedy Z C, Arey B W, Christ J F, Schaef H T, Nune S K, Erikson R L. ACS Appl. Mater. Interfaces, 2018, 10(17): 15112.

doi: 10.1021/acsami.7b17565     URL    
[42]
Lawson S, Al-Naddaf Q, Krishnamurthy A, Amour M S, Griffin C, Rownaghi A A, Knox J C, Rezaei F. ACS Appl. Mater. Interfaces, 2018, 10(22): 19076.

doi: 10.1021/acsami.8b05192     URL    
[43]
Loeb S,. Sourirajan S. Materials Science 1963, 117.
[44]
Mulijani S, Mulanawati A. Procedia Chem., 2012, 4: 360.

doi: 10.1016/j.proche.2012.06.050     URL    
[45]
Valizadeh B, Nguyen T N, Smit B, Stylianou K C. Adv. Funct. Mater., 2018, 28(30): 1801596.

doi: 10.1002/adfm.v28.30     URL    
[46]
Cousin-Saint-Remi J, van der Perre S, Segato T, Delplancke M P, Goderis S, Terryn H, Baron G, Denayer J. ACS Appl. Mater. Interfaces, 2019, 11(14): 13694.

doi: 10.1021/acsami.9b00521     URL    
[47]
Li L X, Yao J F, Xiao P, Shang J, Feng Y, Webley P A, Wang H T. Colloid Polym. Sci., 2013, 291(11): 2711.

doi: 10.1007/s00396-013-3024-8     URL    
[48]
Wang L Y, Chen P, Dong X T, Zhang W, Zhao S, Xiao S T, Ouyang Y G. RSC Adv., 2020, 10(73): 44679.

doi: 10.1039/D0RA08741F     URL    
[49]
Pastore V J, Cook T R. Chem. Mater., 2020, 32(9): 3680.

doi: 10.1021/acs.chemmater.0c00851     URL    
[50]
Yang S L, Peng L, Syzgantseva O A, Trukhina O, Kochetygov I, Justin A, Sun D T, Abedini H, Syzgantseva M A, Oveisi E, Lu G C, Queen W L. J. Am. Chem. Soc., 2020, 142(31): 13415.

doi: 10.1021/jacs.0c02371     URL    
[51]
Pastore V J, Cook T R, Rzayev J. Chem. Mater., 2018, 30(23): 8639.

doi: 10.1021/acs.chemmater.8b03881     URL    
[52]
Zhuo N, Lan Y Q, Yang W B, Yang Z, Li X M, Zhou X, Liu Y, Shen J C, Zhang X T. Sep. Purif. Technol., 2017, 177: 272.

doi: 10.1016/j.seppur.2016.12.041     URL    
[53]
Tan C, Lee M C, Arshadi M, Azizi M, Abbaspourrad A. Angew. Chem. Int. Ed., 2020, 59(24): 9506.

doi: 10.1002/anie.v59.24     URL    
[54]
Stock N, Biswas S. Chem. Rev., 2012, 112(2): 933.

doi: 10.1021/cr200304e     URL    
[55]
Huang A S, Dou W, Caro J. J. Am. Chem. Soc., 2010, 132(44): 15562.

doi: 10.1021/ja108774v     URL    
[56]
McCarthy M C, Varela-Guerrero V, Barnett G V, Jeong H K. Langmuir, 2010, 26(18): 14636.

doi: 10.1021/la102409e     pmid: 20731336
[57]
Yoo Y, Lai Z P, Jeong H K. Microporous Mesoporous Mater., 2009, 1231-3: 100.
[58]
Zou X Q, Zhu G S, Zhang F, Guo M Y, Qiu S L. CrystEngComm, 2010, 12(2): 352.

doi: 10.1039/B912470E     URL    
[59]
Liu Y Y, Hu E P, Khan E A, Lai Z P. J. Membr. Sci., 2010, 353(1/2): 36.

doi: 10.1016/j.memsci.2010.02.023     URL    
[60]
Liu Y, Pan J H, Wang N Y, Steinbach F, Liu X L, Caro J. Angew. Chem. Int. Ed., 2015, 54(10): 3028.

doi: 10.1002/anie.201411550     URL    
[61]
Bux H, Liang F Y, Li Y S, Cravillon J, Wiebcke M, Caro J. J. Am. Chem. Soc., 2009, 131(44): 16000.

doi: 10.1021/ja907359t     URL    
[62]
Guo H L, Zhu G S, Hewitt I J, Qiu S L. J. Am. Chem. Soc., 2009, 131(5): 1646.

doi: 10.1021/ja8074874     URL    
[63]
Kang Z X, Xue M, Fan L L, Huang L, Guo L J, Wei G Y, Chen B L, Qiu S L. Energy Environ. Sci., 2014, 7(12): 4053.

doi: 10.1039/C4EE02275K     URL    
[64]
Li Y J, Liu H O, Wang H T, Qiu J S, Zhang X F. Chem. Sci., 2018, 9(17): 4132.

doi: 10.1039/C7SC04815G     URL    
[65]
BÉtard A, Fischer R A. Chem. Rev., 2012, 112(2): 1055.

doi: 10.1021/cr200167v     URL    
[66]
Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, Ismail A F, Matsuura T. Prog. Polym. Sci., 2014, 39(5): 817.

doi: 10.1016/j.progpolymsci.2014.01.003     URL    
[67]
Pili S, Argent S P, Morris C G, Rought P, García-Sakai V, Silverwood I P, Easun T L, Li M, Warren M R, Murray C A, Tang C C, Yang S H, Schröder M. J. Am. Chem. Soc., 2016, 138(20): 6352.

doi: 10.1021/jacs.6b02194     URL    
[68]
Liu X L, Demir N K, Wu Z T, Li K. J. Am. Chem. Soc., 2015, 137(22): 6999.

doi: 10.1021/jacs.5b02276     URL    
[69]
Shekhah O, Wang H, Zacher D, Fischer R. A, Wöll C. Angew. Chem. Int. Ed., 2009, 48 (27): 5038.

doi: 10.1002/anie.v48:27     URL    
[70]
Munuera C, Shekhah O, Wang H, Wöll C, Ocal C. Phys Chem Chem Phys, 2008, 10 (48): 7257.

doi: 10.1039/b811010g     pmid: 19060970
[71]
Liu J, Shekhah O, Stammer X, Arslan H K, Liu B, Schüpbach B, Terfort A, Wöll C. Materials, 2012, 5 (9): 1581.

doi: 10.3390/ma5091581     URL    
[72]
Biemmi E, Scherb C, Bein T J. Am. Chem. Soc., 2007, 129 (26): 8054.

doi: 10.1021/ja0701208     URL    
[73]
Liu J X, Wöll C. Chem. Soc. Rev., 2017, 46(19): 5730.

doi: 10.1039/C7CS00315C     URL    
[74]
Kind M, Wöll C. Prog. Surf. Sci., 2009, 847-8: 230.
[75]
Hu Y X, Dong X L, Nan J P, Jin W Q, Ren X M, Xu N P, Lee Y M. Chem. Commun., 2011, 47(2): 737.

doi: 10.1039/C0CC03927F     URL    
[76]
Nan J P, Dong X L, Wang W J, Jin W Q, Xu N P. Langmuir, 2011, 27(8): 4309.

doi: 10.1021/la200103w     URL    
[77]
Zhao X, Zhang H, Xu S, Wang Y. AIChE J., 2019, 65(8): e16620.
[78]
Sun Y W, Liu Y, Caro J, Guo X W, Song C S, Liu Y,. Angew. Chem. Int. Ed., 2018, 57(49): 16088.

doi: 10.1002/anie.v57.49     URL    
[79]
Ma X L, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan K A, Tsapatsis M. Science, 2018, 361(6406): 1008.

doi: 10.1126/science.aat4123     URL    
[80]
Xiao F, Wang B, Hu X Y, Nair S, Chen Y B. J. Taiwan Inst. Chem. Eng., 2018, 83: 159.

doi: 10.1016/j.jtice.2017.11.033     URL    
[81]
Ameloot R, Vermoortele F, Vanhove W, Roeffaers M B J, Sels B F, de Vos D E. Nat. Chem., 2011, 3(5): 382.

doi: 10.1038/nchem.1026     pmid: 21505497
[82]
Lu H Y, Zhu S P. Eur. J. Inorg. Chem., 2013, 2013(8): 1294.

doi: 10.1002/ejic.v2013.8     URL    
[83]
Wang L H, Sahabudeen H, Zhang T,Dong R H. Npj 2D Mater. Appl., 2018, 2(1): 1.

doi: 10.1038/s41699-017-0046-y     URL    
[84]
Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J R, Koros W J, Jones C W, Nair S. Science, 2014, 345(6192): 72.

doi: 10.1126/science.1251181     URL    
[85]
Mao Y Y shi L, Huang H B, Cao W, Li J W, Sun L W, Jin X D, Peng X S. Chem. Commun., 2013, 49(50): 5666.

doi: 10.1039/c3cc42601g     URL    
[86]
Anjum M W, Vermoortele F, Khan A L, Bueken B, de Vos D E, Vankelecom I F J. ACS Appl. Mater. Interfaces, 2015, 7(45): 25193.

doi: 10.1021/acsami.5b08964     URL    
[87]
Zornoza B, Martinez-Joaristi A, Serra-Crespo P, Tellez C, Coronas J, Gascon J, Kapteijn F. Chem. Commun., 2011, 47(33): 9522.

doi: 10.1039/c1cc13431k     URL    
[88]
Yang T X, Xiao Y C, Chung T S. Energy Environ. Sci., 2011, 4(10): 4171.

doi: 10.1039/c1ee01324f     URL    
[89]
Nik O G, Chen X Y, Kaliaguine S. J. Membr. Sci., 2012, 413/414: 48.

doi: 10.1016/j.memsci.2012.04.003     URL    
[90]
Basu S, Maes M, Cano-Odena A, Alaerts L, de Vos D E, Vankelecom I F J. J. Membr. Sci., 2009, 344(1/2): 190.

doi: 10.1016/j.memsci.2009.07.051     URL    
[91]
Aroon M A, Ismail A F, Matsuura T, Montazer-Rahmati M M. Sep. Purif. Technol., 2010, 75(3): 229.

doi: 10.1016/j.seppur.2010.08.023     URL    
[92]
Zhai Q G, Bu X H, Mao C Y, Zhao X, Feng P Y. J. Am. Chem. Soc., 2016, 138(8): 2524.

doi: 10.1021/jacs.5b13491     URL    
[93]
Mahajan R, Koros W J. Polym. Eng. Sci., 2002, 42(7): 1420.

doi: 10.1002/(ISSN)1548-2634     URL    
[94]
Kitao T, Zhang Y Y, Kitagawa S, Wang B, Uemura T. Chem. Soc. Rev., 2017, 46(11): 3108.

doi: 10.1039/C7CS00041C     URL    
[95]
Yeo Z Y, Chai S P, Zhu P W, Mohamed A R. RSC Adv., 2014, 4(97): 54322.

doi: 10.1039/C4RA08884K     URL    
[96]
Zhang C Y, Mu Y X, Zhang W, Zhao S, Wang Y X. J. Membr. Sci., 2020, 596: 117724.

doi: 10.1016/j.memsci.2019.117724     URL    
[97]
Mahdi E M, Tan J C. J. Membr. Sci., 2016, 498: 276.

doi: 10.1016/j.memsci.2015.09.066     URL    
[98]
Kertik A, Khan A L, Vankelecom I F J. RSC Adv., 2016, 6(115): 114505.

doi: 10.1039/C6RA23013J     URL    
[99]
Deng Y H, Chen J T, Chang C H, Liao K S, Tung K L, Price W E, Yamauchi Y, Wu K C W. Angew. Chem. Int. Ed., 2016, 55(41): 12793.

doi: 10.1002/anie.v55.41     URL    
[100]
Wang H L, He S F, Qin X D, Li C E, Li T. J. Am. Chem. Soc., 2018, 140(49): 17203.

doi: 10.1021/jacs.8b10138     URL    
[101]
Wu C H, Zhang K X, Wang H L, Fan Y Q, Zhang S W, He S F, Wang F, Tao Y, Zhao X W, Zhang Y B, Ma Y H, Lee Y, Li T. J. Am. Chem. Soc., 2020, 142(43): 18503.

doi: 10.1021/jacs.0c07378     URL    
[102]
Lin R J, Ge L, Hou L, Strounina E, Rudolph V, Zhu Z H. ACS Appl. Mater. Interfaces, 2014, 6(8): 5609.

doi: 10.1021/am500081e     URL    
[103]
Lin R J, Ge L, Diao H, Rudolph V, Zhu Z H. ACS Appl. Mater. Interfaces, 2016, 8(46): 32041.

doi: 10.1021/acsami.6b11074     URL    
[104]
Knebel A, Bavykina A, Datta S J, Sundermann L, Garzon-Tovar L, Lebedev Y, Durini S, Ahmad R, Kozlov S M, Shterk G, Karunakaran M, Carja I D, Simic D, Weilert I, Klüppel M, Giese U, Cavallo L, Rueping M, Eddaoudi M, Caro J, Gascon J. Nat. Mater., 2020, 19(12): 1346.

doi: 10.1038/s41563-020-0764-y     URL    
[105]
Bae Y J, Cho E S, Qiu F, Sun D T, Williams T E, Urban J J, Queen W L. ACS Appl. Mater. Interfaces, 2016, 8(16): 10098.

doi: 10.1021/acsami.6b01299     URL    
[106]
Venna S R, Lartey M, Li T, Spore A, Kumar S, Nulwala H B, Luebke D R, Rosi N L, Albenze E. J. Mater. Chem. A, 2015, 3(9): 5014.

doi: 10.1039/C4TA05225K     URL    
[107]
Xie K, Fu Q, Xu C L, Lu H, Zhao Q H, Curtain R, Gu D Y, Webley P A, Qiao G G. Energy Environ. Sci., 2018, 11(3): 544.

doi: 10.1039/C7EE02820B     URL    
[108]
Zimpel A, Preiß T, Röder R, Engelke H, Ingrisch M, Peller M, Rädler J O, Wagner E, Bein T, Lächelt U, Wuttke S. Chem. Mater., 2016, 28(10): 3318.

doi: 10.1021/acs.chemmater.6b00180     URL    
[109]
Mileo P G M, Yuan S C, Ayala S, Duan P, Semino R, Cohen S M, Schmidt-Rohr K, Maurin G. J. Am. Chem. Soc., 2020, 142(24): 10863.

doi: 10.1021/jacs.0c04546     URL    
[110]
Zhang Z J, Nguyen H T H, Miller S A, Cohen S M. Angew. Chem. Int. Ed., 2015, 54(21): 6152.

doi: 10.1002/anie.201502733     URL    
[111]
Zhang Z J, Nguyen H T H, Miller S A, Ploskonka A M, DeCoste J B, Cohen S M. J. Am. Chem. Soc., 2016, 138(3): 920.

doi: 10.1021/jacs.5b11034     URL    
[112]
Zhang Y Y, Feng X, Li H W, Chen Y F, Zhao J S, Wang S, Wang L, Wang B. Angew. Chem. Int. Ed., 2015, 54(14): 4259.

doi: 10.1002/anie.201500207     URL    
[113]
Feng T T, Ye Y X, Liu X, Cui H, Li Z Q, Zhang Y, Liang B, Li H R, Chen B L. Angew. Chem. Int. Ed., 2020, 59(48): 21752.

doi: 10.1002/anie.v59.48     URL    
[114]
Fan H W, Shi Q, Yan H, Ji S L, Dong J X, Zhang G J. Angew. Chem. Int. Ed., 2014, 53(22): 5578.

doi: 10.1002/anie.v53.22     URL    
[115]
Erucar I, Yilmaz G, Keskin S. Chem. Asian J., 2013, 8(8): 1692.

doi: 10.1002/asia.v8.8     URL    
[116]
Marti A M, Venna S R, Roth E A, Culp J T, Hopkinson D P. ACS Appl. Mater. Interfaces, 2018, 10(29): 24784.

doi: 10.1021/acsami.8b06592     URL    
[117]
Mao H, Zhen H G, Ahmad A, Zhang A S, Zhao Z P. J. Membr. Sci., 2019, 573: 344.

doi: 10.1016/j.memsci.2018.12.017     URL    
[1] 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 金属有机骨架材料的复合成型[J]. 化学进展, 2021, 33(12): 2173-2187.
[2] 张旭强, 吕功煊. 光电催化分解水Ⅲ-Ⅴ族半导体光电极薄膜保护策略[J]. 化学进展, 2020, 32(9): 1368-1375.
[3] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[4] 张奇, 项徽清, 刘建国, 曾晓雁. 喷墨打印制备高性能薄膜晶体管的材料体系[J]. 化学进展, 2019, 31(10): 1417-1424.
[5] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[6] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[7] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[8] 赵响, 赵宗彦. 四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景[J]. 化学进展, 2015, 27(7): 913-934.
[9] 尤运城, 曾甜, 刘劲松, 胡廷松, 台国安. 类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用[J]. 化学进展, 2015, 27(11): 1578-1590.
[10] 董航, 张林, 陈欢林, 高从堦. 混合基质水处理膜:材料、制备与性能[J]. 化学进展, 2014, 26(12): 2007-2018.
[11] 刘渊, 丁立平*, 曹源, 房喻. 荧光传感器阵列[J]. 化学进展, 2012, (10): 1915-1927.
[12] 张倩, 单锋, 陆学民, 路庆华. 垂直取向介孔薄膜的制备[J]. 化学进展, 2012, 24(04): 492-500.
[13] 唐晶晶, 第凤, 徐潇, 肖迎红, 车剑飞. 石墨烯透明导电薄膜[J]. 化学进展, 2012, 24(04): 501-511.
[14] 周永宁, 傅正文. 纳米薄膜锂离子电池电极材料[J]. 化学进展, 2011, 23(0203): 336-348.
[15] 董全峰, 宋杰, 郑明森, Susanne Jacke, Wolfram Jaegermann. 微型锂离子电池及关键材料的研究[J]. 化学进展, 2011, 23(0203): 374-381.
阅读次数
全文


摘要