中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 858-871 DOI: 10.7536/PC181102 Previous Articles   Next Articles

Construction of Photochemical Method and Cell Imaging Based on Nucleic Acid Probes

Cong Zhang1, Qiaoli Yue1,**(), Lixia Tao1, Yingying Hu1, Chen-Zhong Li1,3, Bo Tang2,**()   

  1. 1.College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
    2.College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
    3.Department of Biomedical Engineering, Florida International University, Miami 33174, USA
  • Received: Online: Published:
  • Contact: Qiaoli Yue, Bo Tang
  • About author:
    ** E-mail: (Qiaoli Yue);
  • Supported by:
    National Natural Science Foundation of China(91543206); Natural Science Foundation of Shandong Province(ZR2014BQ017); Natural Science Foundation of Shandong Province(ZR2015BM024); Natural Science Foundation of Shandong Province(2013SJGZ07); Tai-Shan Scholar Research Fund of Shandong Province and Research Foundation of Liaocheng University
Richhtml ( 11 ) PDF ( 1394 ) Cited
Export

EndNote

Ris

BibTeX

Many diseases are characterized by abnormal activity of various biomolecules, in which some substances are usually overexpressed inside and outside of cells. Therefore, the targeting and recognition of these biomolecules can be potentially utilized in diagnostic and therapeutic fields. Owing to the developments of gene diagnosis and chemical sensing technique, the application of nucleic acid probes is promoted widely for the sensitive detection of intracellular and extracellular biochemicals. The nucleic acid probes can specifically bind to the target material while stably entering the cell. In the procedure, the target can be monitored using optical approaches and the reaction mechanism can be identified by bioimaging techniques. In this review,we focus on the progress of nucleic acid probes' application in the assay of biochemical molecules by adopting optical methods and bioimaging techniques. The main content is classified by three parts based on analytes. The target materials include nucleic acid, protein and enzyme, and chemical and physicochemical molecules. For the three representative systems, the design principles, key techniques, detection results such as sensitivity and samples are illustrated in detail. The advantages and disadvantages of various nucleic acid probes are compared and listed as well.

Fig. 1 Ratiometric nanocluster beacon detection mechanism[20]. Copyright ? 2017, American Chemical Society
Fig. 2 Principle of target mRNA detection with FRET-based DNA-NT and sequences for the FRET-based DNA-NT used in this study:(a) a FRET-based DNA-NT self-assembled from three single-stranded DNAs alters its structure from an open state to a closed state, producing a FRET signal in response to target mRNA recognition and (b) the structure of DNA-NT for GLUT1[21]. Copyright ? 2016, American Chemical Society
Fig. 3 (A) Synthetic routes for the preparation of the multi-color encoded DNA TetrNano.(B) Cellular uptake of the DNA tetrnano probes for multiplexed detection of tumor-related intracellular miRNA-21 and miRNA-155 in human breast cancer cells[40]. Copyright ? 2016, American Chemical Society
Fig. 4 Structure and working principle of SATP in cancer theranostics[93]. Copyright ? 2016, American Chemical Society
Fig. 5 Illustration of telomerase activity monitoring and drug delivery based on novel nuclear-shell biopolymers in individual cancer cells[99]. Copyright ? 2017, American Chemical Society
Fig. 6 Scheme of the simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme-modified AuNP[105].Copyright ? 2015, American Chemical Society
[1]
Farrell R E . Nucleic Acid Probe Technology, 2010. 261.
[2]
Kemin W, Zhiwen T, Chaoyong James Y, Youngmi K, Xiaohong F, Wei L, Yanrong W, Medley C D, Zehui C, Jun L . Angew. Chem. Int. Ed., 2010,48:856. https://www.ncbi.nlm.nih.gov/pubmed/19065690

doi: 10.1002/anie.200800370 pmid: 19065690
[3]
Peng X, Wu T, Fan J, Wang J, Zhang S, Song F, Sun S . Angew. Chem. Int. Ed., 2011,50:4180. https://www.ncbi.nlm.nih.gov/pubmed/21472921

doi: 10.1002/anie.201007386 pmid: 21472921
[4]
Xin S, Xianjin X, Chen Z, Meiping Z . Appl Spectrosc, 2012,66:1249. https://www.ncbi.nlm.nih.gov/pubmed/23146180

doi: 10.1366/12-06803 pmid: 23146180
[5]
金叶倩(Jin Y Q) . 苏州大学硕士论文( Master Thesis of Soochow University), 2011.
[6]
Averick S E, Eduardo P, Debasish G, Woodman B F, Miyake-Stoner S J, Mehl R A, Krzysztof M, Das S R . Langmuir, 2012,28:1954. https://www.ncbi.nlm.nih.gov/pubmed/22224833

doi: 10.1021/la204077v pmid: 22224833
[7]
Akira O, Humika T . Angew. Chem. Int. Ed., 2010,43:4300. https://www.ncbi.nlm.nih.gov/pubmed/15368377

doi: 10.1002/anie.200454172 pmid: 15368377
[8]
Ono A, Torigoe H, Tanaka Y, Okamoto I . Chem. Soc. Rev., 2011,40:5855. https://www.ncbi.nlm.nih.gov/pubmed/21826352

doi: 10.1039/c1cs15149e pmid: 21826352
[9]
Yue Q, Shen T, Wang J, Wang L, Xu S, Li H, Liu J . Chem. Commun., 2013,49:1750. https://www.ncbi.nlm.nih.gov/pubmed/23344458

doi: 10.1039/c3cc38488h pmid: 23344458
[10]
Shen T, Yue Q, Jiang X, Wang L, Xu S, Li H, Gu X, Zhang S, Liu J . Talanta, 2013,117:81. https://www.ncbi.nlm.nih.gov/pubmed/24209314

doi: 10.1016/j.talanta.2013.08.017 pmid: 24209314
[11]
Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y . Chem. Commun., 2008,39:4825. https://www.ncbi.nlm.nih.gov/pubmed/18830506

doi: 10.1039/b808686a pmid: 18830506
[12]
Smirnov I, Shafer R H . J. Mol. Biol., 2000,296:1. https://www.ncbi.nlm.nih.gov/pubmed/10656813

doi: 10.1006/jmbi.1999.3441 pmid: 10656813
[13]
Wang L, Liu X, Zhang Q, Zhang C, Liu Y, Tu K, Tu J . Biotechnol. Lett., 2012,34:869. https://www.ncbi.nlm.nih.gov/pubmed/22261866

doi: 10.1007/s10529-012-0850-6 pmid: 22261866
[14]
刘晓静(Liu X J), 刘韧(Zhou R), 顾长国(Gu C G), 朱旭东(Zhu X D) . 生理科学进展 (Progress in Physiological Sciences), 2004,35(4):374.
[15]
Amor S, Yang S Y, Jmy W, Monchaud D . Curr. Protoc. Cell Biol., 2017, 76: 4. 33. 1.
[16]
Pavlov V, Xiao Y, Shlyahovsky B, Willner I . J. Am. Chem. Soc., 2004,126:11768. https://www.ncbi.nlm.nih.gov/pubmed/15382892

doi: 10.1021/ja046970u pmid: 15382892
[17]
Loo A H, Sofer Z, Bouša D, Ulbrich P, Bonanni A, Pumera M . ACS Appl. Mater. Inter., 2016,8:1951.
[18]
Fan D, Zhu X, Zhai Q, Wang E, Dong S . Anal. Chem., 2016,88:9158. https://www.ncbi.nlm.nih.gov/pubmed/27575055

doi: 10.1021/acs.analchem.6b02282 pmid: 27575055
[19]
Mei Z, Tang L . Anal. Chem., 2017,89:633. https://www.ncbi.nlm.nih.gov/pubmed/27991768

doi: 10.1021/acs.analchem.6b02797 pmid: 27991768
[20]
Ge L, Sun X, Hong Q, Li F . ACS Appl. Mater. Inter., 2017,9:13102. https://www.ncbi.nlm.nih.gov/pubmed/28367619

doi: 10.1021/acsami.7b03198 pmid: 28367619
[21]
Shigeto H, Nakatsuka K, Ikeda T, Hirota R, Kuroda A, Funabashi H . Anal. Chem., 2016,88:7894. https://www.ncbi.nlm.nih.gov/pubmed/27458920

doi: 10.1021/acs.analchem.6b02710 pmid: 27458920
[22]
He L, Lu D Q, Liang H, Xie S, Luo C, Hu M, Xu L, Zhang X, Tan W . ACS Nano, 2017,11:4060. https://www.ncbi.nlm.nih.gov/pubmed/28328200

doi: 10.1021/acsnano.7b00725 pmid: 28328200
[23]
Wu C, Cansiz S, Zhang L, Teng I T, Qiu L, Li J, Liu Y, Zhou C, Hu R, Zhang T, Cui C, Cui L, Tan W . J. Am. Chem. Soc., 2015,137:4900. https://www.ncbi.nlm.nih.gov/pubmed/25835750

doi: 10.1021/jacs.5b00542 pmid: 25835750
[24]
Hsieh W C, Bahal R, Thadke S A, Bhatt K, Sobczak K, Thornton C A, Ly D H . Biochemistry, 2018,57:907. https://www.ncbi.nlm.nih.gov/pubmed/29334465

doi: 10.1021/acs.biochem.7b01239 pmid: 29334465
[25]
Bülbül G, Hayat A, Mustafa F, Andreescu S . Sci. Rep., 2018,8:2426. https://www.ncbi.nlm.nih.gov/pubmed/29402996

doi: 10.1038/s41598-018-20659-9 pmid: 29402996
[26]
Alonso-Cristobal P, Vilela P, El-Sagheer A, Lopez-Cabarcos E, Brown T, Muskens O L, Rubio-Retama J, Kanaras A G . ACS Appl. Mater. Inter., 2015,7:12422. https://www.ncbi.nlm.nih.gov/pubmed/25622622

doi: 10.1021/am507591u pmid: 25622622
[27]
Lee J, Lee Y M, Kim W . J. Chem. Mater., 2016,28:3961.
[28]
Cen Y, Deng W J, Yang Y, Yu R Q, Chu X . Anal. Chem., 2017,89:10321. https://www.ncbi.nlm.nih.gov/pubmed/28872842

doi: 10.1021/acs.analchem.7b02081 pmid: 28872842
[29]
Wang S, Xia M, Liu J, Zhang S, Zhang X . ACS Sens., 2017,2:735. https://www.ncbi.nlm.nih.gov/pubmed/28723114

doi: 10.1021/acssensors.7b00290 pmid: 28723114
[30]
Shi J, Zhou M, Gong A, Li Q, Wu Q, Cheng G J, Yang M, Sun Y . Anal. Chem., 2016,88:1979. https://www.ncbi.nlm.nih.gov/pubmed/26813157

doi: 10.1021/acs.analchem.5b03689 pmid: 26813157
[31]
Wu Z, Liu G Q, Yang X L, Jiang J H . J. Am. Chem. Soc., 2015,137:6829. https://www.ncbi.nlm.nih.gov/pubmed/25969953

doi: 10.1021/jacs.5b01778 pmid: 25969953
[32]
Ong W Q, Citron Y R, Sekine S, Huang B . ACS Chem. Biol., 2017,12:200. https://pubs.acs.org/doi/10.1021/acschembio.6b00586

doi: 10.1021/acschembio.6b00586
[33]
Lin L S, Cong Z X, Cao J B, Ke K M, Peng Q L, Gao J, Yang H H, Liu G, Chen X . ACS Nano, 2014,8:3876. https://pubs.acs.org/doi/10.1021/nn500722y

doi: 10.1021/nn500722y
[34]
Su F X, Yang C X, Yan X P . Anal. Chem., 2017,89:7277. https://www.ncbi.nlm.nih.gov/pubmed/28660758

doi: 10.1021/acs.analchem.7b01348 pmid: 28660758
[35]
Luan M, Yu L, Li Y, Pan W, Gao X, Wan X, Li N, Tang B . Anal. Chem., 2017,89:10601. https://www.ncbi.nlm.nih.gov/pubmed/28882040

doi: 10.1021/acs.analchem.7b03146 pmid: 28882040
[36]
Yang L, Chen Y, Pan W, Wang H, Li N, Tang B . Anal. Chem., 2017,89:6196. https://www.ncbi.nlm.nih.gov/pubmed/28492308

doi: 10.1021/acs.analchem.7b01144 pmid: 28492308
[37]
Hong C, Baek A, Hah S S, Jung W, Kim D E . Anal. Chem., 2016,88:2999. https://www.ncbi.nlm.nih.gov/pubmed/26902732

doi: 10.1021/acs.analchem.6b00046 pmid: 26902732
[38]
Lu Q, Ericson D, Song Y, Zhu C, Ye R, Liu S, Spernyak J A, Du D, Li H, Wu Y, Lin Y . ACS Appl. Mater. Inter., 2017,9:23325. https://www.ncbi.nlm.nih.gov/pubmed/28493665

doi: 10.1021/acsami.6b15387 pmid: 28493665
[39]
Li D, Zhou W, Yuan R, Xiang Y . Anal. Chem., 2017,89:9934. https://www.ncbi.nlm.nih.gov/pubmed/28809475

doi: 10.1021/acs.analchem.7b02247 pmid: 28809475
[40]
Zhou W, Li D, Xiong C, Yuan R, Xiang Y . ACS Appl. Mater. Inter., 2016,8:13303. https://www.ncbi.nlm.nih.gov/pubmed/27195747

doi: 10.1021/acsami.6b03165 pmid: 27195747
[41]
Ryoo S R, Lee J, Yeo J, Na H K, Kim Y K, Jang H, Lee J H, Han S W, Woo H S, Lee Y H, Kim V N, Min D H . ACS Nano, 2013,7:5882. https://www.ncbi.nlm.nih.gov/pubmed/23767402

doi: 10.1021/nn401183s pmid: 23767402
[42]
Liu J, Zhang L, Lei J, Ju H . ACS Appl. Mater. Inter., 2015,7:19016. https://www.ncbi.nlm.nih.gov/pubmed/26271820

doi: 10.1021/acsami.5b06206 pmid: 26271820
[43]
Ye S, Li X, Wang M, Tang B . Anal. Chem., 2017,89:5124. https://www.ncbi.nlm.nih.gov/pubmed/28358481

doi: 10.1021/acs.analchem.7b00697 pmid: 28358481
[44]
Li H, Mu Y, Lu J, Wei W, Wan Y, Liu S . Anal. Chem., 2014,86:3602. https://www.ncbi.nlm.nih.gov/pubmed/24576151

doi: 10.1021/ac500173d pmid: 24576151
[45]
Yang Y, Huang J, Yang X, He X, Quan K, Xie N, Ou M, Wang K . Anal. Chem., 2017,89:5850. https://www.ncbi.nlm.nih.gov/pubmed/28503919

doi: 10.1021/acs.analchem.7b00174 pmid: 28503919
[46]
Liu H, Li L, Wang Q, Duan L, Tang B . Anal. Chem., 2014,86:5487. https://www.ncbi.nlm.nih.gov/pubmed/24823448

doi: 10.1021/ac500752t pmid: 24823448
[47]
Yue Q, Tao L, Hou Y, Zhang C, Wang Y, Hong M, Li C Z . Nanomedicine, 2018,13:2301. https://www.ncbi.nlm.nih.gov/pubmed/30284477

doi: 10.2217/nnm-2018-0066 pmid: 30284477
[48]
Yang L, Ren Y, Pan W, Yu Z, Tong L, Li N, Tang B . Anal. Chem., 2016,88:11886. https://www.ncbi.nlm.nih.gov/pubmed/27804287

doi: 10.1021/acs.analchem.6b03701 pmid: 27804287
[49]
Jayagopal A, Halfpenny K C, Perez J W, Wright D W . J. Am. Chem. Soc., 2010,132:9789. https://www.ncbi.nlm.nih.gov/pubmed/20586450

doi: 10.1021/ja102585v pmid: 20586450
[50]
Zhang P, He Z, Wang C, Chen J, Zhao J, Zhu X, Li C Z, Min Q, Zhu J J . ACS Nano, 2015,9:789. https://www.ncbi.nlm.nih.gov/pubmed/25525669

doi: 10.1021/nn506309d pmid: 25525669
[51]
Yao Q, Li H, Xian L, Xu F, Xia J, Fan J, Du J, Wang J, Peng X . Biomaterials, 2018,177:78. https://www.ncbi.nlm.nih.gov/pubmed/29885588

doi: 10.1016/j.biomaterials.2018.05.050 pmid: 29885588
[52]
Özhalıcı-Ünal H, Armitage B A . ACS Nano, 2009,3:425. https://www.ncbi.nlm.nih.gov/pubmed/19236081

doi: 10.1021/nn800727x pmid: 19236081
[53]
Julius B, David R H, Alexander S, Robert B R, Stephen M C . Cell, 2003,113:25. https://www.ncbi.nlm.nih.gov/pubmed/12679032

doi: 10.1016/s0092-8674(03)00231-9 pmid: 12679032
[54]
Kloosterman W P, Plasterk R H A . Dev. Cell, 2006,11:441.
[55]
Garzon R, Fabbri M, Cimmino A, Calin G A, Croce C M . Trends Mol. Med., 2006,12:580. https://www.ncbi.nlm.nih.gov/pubmed/17071139

doi: 10.1016/j.molmed.2006.10.006 pmid: 17071139
[56]
Esquela-Kerscher A, Slack F J . Nat. Rev. Cancer, 2006,6:259.
[57]
Esau C C, Monia B P . Adv. Drug Deliv. Rev., 2007,59:101. https://www.ncbi.nlm.nih.gov/pubmed/17462786

doi: 10.1016/j.addr.2007.03.007 pmid: 17462786
[58]
He L, He X, Lim L P, Stanchina E d, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson A L, Linsley P S, Chen C, Lowe S W, Cleary M A, Hannon G J . Nature, 2007,28:1130.
[59]
Li M, Julie T-F, Robert A W . Nature, 2007,449:682. https://www.ncbi.nlm.nih.gov/pubmed/17898713

doi: 10.1038/nature06174 pmid: 17898713
[60]
Tavazoie S F, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos P D, Gerald W L, Massagué J . Nature, 2008,451:147. https://www.ncbi.nlm.nih.gov/pubmed/18185580

doi: 10.1038/nature06487 pmid: 18185580
[61]
Guay C, Regazzi R . Nat. Rev. Endocrinol, 2013,9:513.
[62]
McClelland A D, Kantharidis P . Clin. Sci., 2014,126:95. https://www.ncbi.nlm.nih.gov/pubmed/24059587

doi: 10.1042/CS20130079 pmid: 24059587
[63]
McKeague M, McConnell E M, Cruz-Toledo J, Bernard E D, Pach A, Mastronardi E, Zhang X, Beking M, Francis T, Giamberardino A, Cabecinha A, Ruscito A, Aranda-Rodriguez R, Dumontier M, DeRosa M C . J. Mol. Evol., 2015,81:150. https://www.ncbi.nlm.nih.gov/pubmed/26530075

doi: 10.1007/s00239-015-9708-6 pmid: 26530075
[64]
Platella C, Riccardi C, Montesarchio D, Roviello G N, Musumeci D . Biochim. Biophys. Acta Gen. Subj., 2017,1861:1429. https://www.ncbi.nlm.nih.gov/pubmed/27865995

doi: 10.1016/j.bbagen.2016.11.027 pmid: 27865995
[65]
Kazlauskas A . Gene, 2017,614:1. https://www.ncbi.nlm.nih.gov/pubmed/28267575

doi: 10.1016/j.gene.2017.03.003 pmid: 28267575
[66]
Varun P, A Rahim R, Majid B, Hiroshi K, Chunlei W . Biosens. Bioelectron., 2013,39:118. https://www.ncbi.nlm.nih.gov/pubmed/22841446

doi: 10.1016/j.bios.2012.06.055 pmid: 22841446
[67]
Yoshihiko N, Wataru Y, Koichi A, Stefano F, Holger S, Bachmann T T, Kazunori I . Anal. Chem., 2013,85:1132. https://www.ncbi.nlm.nih.gov/pubmed/23237717

doi: 10.1021/ac303023d pmid: 23237717
[68]
Kim, Bongjune, Choi, Kim, Hyun-Ouk, Jang, Eunji, Haam, Seungjoo . Nanoscale Res. Lett., 2013,8:399. https://www.ncbi.nlm.nih.gov/pubmed/24066922

doi: 10.1186/1556-276X-8-399 pmid: 24066922
[69]
Nabavinia M S, Gholoobi A, Charbgoo F, Nabavinia M, Ramezani M, Abnous K . Med. Res. Rev., 2017,37:1.
[70]
Martínez O, Bellard E, Golzio M, Mechiche-Alami S, Rols M P, Teissié J, Ecochard V, Paquereau L . Nucleic Acid Ther., 2014,24:217. https://www.ncbi.nlm.nih.gov/pubmed/24490589

doi: 10.1089/nat.2013.0444 pmid: 24490589
[71]
Bates P J, Reyes-Reyes E M, Malik M T, Murphy E M, O'Toole M G, Trent J O . Biochim. Biophys. Acta Gen. Subj., 2016,1861:1414. https://www.ncbi.nlm.nih.gov/pubmed/28007579

doi: 10.1016/j.bbagen.2016.12.015 pmid: 28007579
[72]
Motaghi H, Mehrgardi M A, Bouvet P . Sci. Rep., 2017,7:10513. https://www.ncbi.nlm.nih.gov/pubmed/28874822

doi: 10.1038/s41598-017-11087-2 pmid: 28874822
[73]
Wang X, Song P, Peng L, Tong A, Xiang Y . ACS Appl. Mater. Inter., 2015,8:609.
[74]
Wang D, Liu B, Ma Y, Wu C, Mou Q, Deng H, Wang R, Yan D, Zhang C, Zhu X . J. Am. Chem. Soc., 2017,139:14021. https://www.ncbi.nlm.nih.gov/pubmed/28945366

doi: 10.1021/jacs.7b08303 pmid: 28945366
[75]
Lutgens E, Muinck E D d, Kitslaar P J E H M, Tordoir J H M, Wellens H J J, Daemen M J A P . Cardiovasc. Res., 1999,41:473. https://www.ncbi.nlm.nih.gov/pubmed/10341847

doi: 10.1016/s0008-6363(98)00311-3 pmid: 10341847
[76]
Schrijvers D M, Meyer G R Y D, Kockx M M, Herman A G, Martinet W . Arterioscler. Thromb. Vasc. Biol., 2005,25:1256. https://www.ncbi.nlm.nih.gov/pubmed/15831805

doi: 10.1161/01.ATV.0000166517.18801.a7 pmid: 15831805
[77]
Sun Y, Gao W, Zhao Y, Cao W, Liu Z, Cui G, Tong L, Lei F, Tang B . Anal. Chem., 2017,89:4642. https://www.ncbi.nlm.nih.gov/pubmed/28359155

doi: 10.1021/acs.analchem.7b00221 pmid: 28359155
[78]
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T . Biotechnol. Adv., 2015,33:1141. https://www.ncbi.nlm.nih.gov/pubmed/25708387

doi: 10.1016/j.biotechadv.2015.02.008 pmid: 25708387
[79]
Li X, An Y, Jin J, Zhu Z, Hao L, Liu L, Shi Y, Fan D, Ji T, Yang C J . Anal. Chem., 2015,87:4941. https://www.ncbi.nlm.nih.gov/pubmed/25867099

doi: 10.1021/acs.analchem.5b00637 pmid: 25867099
[80]
Li X, Zhang W, Liu L, Zhu Z, Ouyang G, An Y, Zhao C, Yang C J . Anal. Chem., 2014,86:6596. https://www.ncbi.nlm.nih.gov/pubmed/24892693

doi: 10.1021/ac501205q pmid: 24892693
[81]
Yuan B, Jiang X, Chen Y, Guo Q, Wang K, Meng X, Huang Z, Wen X . Talanta, 2017,170:56. https://www.ncbi.nlm.nih.gov/pubmed/28501211

doi: 10.1016/j.talanta.2017.03.094 pmid: 28501211
[82]
Zhu G, Zhang H, Jacobson O, Wang Z, Chen H, Yang X, Niu G, Chen X . Bioconjug. Chem., 2017,28:1068. https://www.ncbi.nlm.nih.gov/pubmed/28122449

doi: 10.1021/acs.bioconjchem.6b00746 pmid: 28122449
[83]
Kulozik, Hentze, Danckwardt. J.Mol. Med., 2013,91:1257.
[84]
De T S, Morvan F, Meyer A, Vasseur J J, Cummaro A, Petraccone L, Pagano B, Novellino E, Randazzo A, Giancola C . Bioconjug. Chem., 2013,24:1917. https://www.ncbi.nlm.nih.gov/pubmed/24094251

doi: 10.1021/bc400352s pmid: 24094251
[85]
Riccardi C, Russo K I, Musumeci D, Morvan F, Meyer A, Vasseur J J, Paduano L, Montesarchio D . ACS Appl. Mater. Inter., 2017,9:35574. https://www.ncbi.nlm.nih.gov/pubmed/28849915

doi: 10.1021/acsami.7b11195 pmid: 28849915
[86]
Nambi K J, Park S H, Kim S K . Sensors, 2017,17:2044.
[87]
Datta D, Sarkar K, Mukherjee S, Meshik X, Stroscio M A, Dutta M . Nanotechnology, 2017,28:325502. https://www.ncbi.nlm.nih.gov/pubmed/28718456

doi: 10.1088/1361-6528/aa79e0 pmid: 28718456
[88]
Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J . Biosens. Bioelectron., 2014,56:231. https://www.ncbi.nlm.nih.gov/pubmed/24508546

doi: 10.1016/j.bios.2014.01.021 pmid: 24508546
[89]
Hou Y, Liu J, Hong M, Li X, Ma Y, Yue Q, Li C Z . Biosens. Bioelectron., 2017,92:259. https://www.ncbi.nlm.nih.gov/pubmed/28231553

doi: 10.1016/j.bios.2017.02.024 pmid: 28231553
[90]
Zhang J J, Smaga L P, Satyavolu N S R, Chan J, Lu Y . J. Am. Chem. Soc., 2017,139:17225.
[91]
Golubkov V S, Prigozhina N L, Yong Z, Konstantin S, Lewis J D, Schwartz P E, Hoffman R M, Strongin A Y . J. Biol. Chem., 2014,289:24238. https://www.ncbi.nlm.nih.gov/pubmed/25006253

doi: 10.1074/jbc.M114.574459 pmid: 25006253
[92]
Li H, Hu H, Xu D . Anal. Chem., 2015,87:3826. https://www.ncbi.nlm.nih.gov/pubmed/25764443

doi: 10.1021/ac5045274 pmid: 25764443
[93]
Lei Y, Tang J H S, Ye X, He X, Xu F, Yan L a, Qiao Z, Wang K . Anal. Chem., 2016,88:11699. https://www.ncbi.nlm.nih.gov/pubmed/27807977

doi: 10.1021/acs.analchem.6b03283 pmid: 27807977
[94]
Calzada V, Moreno M, Newton J, González J, Fernández M, Gambini J P, Ibarra M, Chabalgoity A, Deutscher S, Quinn T . Bioorg. Med. Chem., 2017,25:1163. https://www.ncbi.nlm.nih.gov/pubmed/28089349

doi: 10.1016/j.bmc.2016.12.026 pmid: 28089349
[95]
Li Z, He X, Luo X, Wang L, Ma N . Anal. Chem., 2016,88:9355. https://www.ncbi.nlm.nih.gov/pubmed/27649276

doi: 10.1021/acs.analchem.6b02864 pmid: 27649276
[96]
Li H, Hu H, Zhao Y, Chen X, Li W, Qiang W, Xu D . Anal. Chem., 2015,87:3736. https://www.ncbi.nlm.nih.gov/pubmed/25686206

doi: 10.1021/ac504230j pmid: 25686206
[97]
Wei X, Li M, Hu P, Yang B . Sens. Actuators B, 2017,241:422.
[98]
Yan L A, Shi H, He X, Wang K, Tang J, Chen M, Ye X, Xu F, Lei Y . Anal. Chem., 2014,86:9271. https://www.ncbi.nlm.nih.gov/pubmed/25153687

doi: 10.1021/ac5024149 pmid: 25153687
[99]
Zhang Z, Jiao Y, Zhu M, Zhang S . Anal. Chem., 2017,89:4320. https://www.ncbi.nlm.nih.gov/pubmed/28301132

doi: 10.1021/acs.analchem.7b00591 pmid: 28301132
[100]
Zhuang Y, Huang F, Xu Q, Zhang M, Lou X, Xia F . Anal. Chem., 2016,88:3289. https://www.ncbi.nlm.nih.gov/pubmed/26867868

doi: 10.1021/acs.analchem.5b04756 pmid: 26867868
[101]
Hong M, Xu L, Xue Q, Li L, Tang B . Anal. Chem., 2016,88:12177. https://www.ncbi.nlm.nih.gov/pubmed/28193027

doi: 10.1021/acs.analchem.6b03108 pmid: 28193027
[102]
Jia Y, Gao P, Zhuang Y, Miao M, Lou X, Xia F . Anal. Chem., 2016,88:6621. https://www.ncbi.nlm.nih.gov/pubmed/27223599

doi: 10.1021/acs.analchem.6b01777 pmid: 27223599
[103]
Chen L, Fang S, Xiao X, Zheng B, Zhao M . Anal. Chem., 2016,88:11306. https://www.ncbi.nlm.nih.gov/pubmed/27934106

doi: 10.1021/acs.analchem.6b03743 pmid: 27934106
[104]
李敏(Li M), 孔慧芳(Kong H F), 郭志慧(Guo Z H) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2016,37(7):1269.
[105]
Li L, Feng J, Fan Y, Tang B . Anal. Chem., 2015,87:4829. https://www.ncbi.nlm.nih.gov/pubmed/25853631

doi: 10.1021/acs.analchem.5b00204 pmid: 25853631
[106]
Gao W, Wei X, Wang X, Cui G, Liu Z, Tang B . Chem. Commun., 2016,52:3643. https://www.ncbi.nlm.nih.gov/pubmed/26848646

doi: 10.1039/c6cc00112b pmid: 26848646
[107]
Zheng X, Peng R, Jiang X, Wang Y, Xu S, Ke G, Fu T, Liu Q, Huan S, Zhang X . Anal. Chem., 2017,89:10941. https://www.ncbi.nlm.nih.gov/pubmed/28931278

doi: 10.1021/acs.analchem.7b02763 pmid: 28931278
[108]
Walter H-K, Bauer J, Steinmeyer J, Kuzuya A, Niemeyer C M, Wagenknecht H-A . Nano Lett., 2017,17:2467. https://www.ncbi.nlm.nih.gov/pubmed/28249387

doi: 10.1021/acs.nanolett.7b00159 pmid: 28249387
[109]
Ke G, Zhu Z, Wang W, Zou Y, Guan Z, Jia S, Zhang H, Wu X, Yang C J . ACS Appl. Mater. Inter., 2014,6:15329. https://www.ncbi.nlm.nih.gov/pubmed/25111767

doi: 10.1021/am503818n pmid: 25111767
[110]
Ebrahimi S, Akhlaghi Y, Kompany-Zareh M, Rinnan Å . ACS Nano, 2014,8:10372. https://www.ncbi.nlm.nih.gov/pubmed/25265370

doi: 10.1021/nn5036944 pmid: 25265370
[111]
Wu Y, Liu J, Wang Y, Li K, Li L, Xu J, Wu D . ACS Appl. Mater. Inter., 2017,9:11073. https://www.ncbi.nlm.nih.gov/pubmed/28263548

doi: 10.1021/acsami.7b01554 pmid: 28263548
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[4] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[5] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[6] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[7] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[8] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[9] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[10] Chao Zhao, Zongwei Cai. Mass Spectrometry Imaging and Omics for Environmental Toxicology Research [J]. Progress in Chemistry, 2021, 33(4): 503-511.
[11] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[12] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[13] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[14] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[15] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.