中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1082-1092 DOI: 10.7536/PC170448 Previous Articles   Next Articles

• Review •

Research Progress and Challenge of Synthetic Musks:from Personal Care, Environment Pollution to Human Health

Yanpeng Gao, Guiying Li, Shengtao Ma, Taicheng An*   

  1. Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.41425015, 41603115, 41573086) and the Natural Science Foundation of Guangdong Province, China(No. 2016A030310120).
PDF ( 945 ) Cited
Export

EndNote

Ris

BibTeX

Synthetic Musks (SMs) are widely used as fragrance ingredients in various personal care products and consumer goods, due to their fragrance smell similar to natural musk. Given the extensive use and large amount of consumption as well as incomplete disposal in conventional wastewater treatment plants (WWTP), SMs are discharged into aquatic environment and frequently detected in aquatic organisms, air and even human milk, blood, and adipose tissues, resulting in the potential adverse effects on ecological environment and human health. Therefore, SMs became an important kind of emerging organic contaminants (EOCs). In this study, the current research progress on the environmental pollution, transformation mechanisms, environmental fate and health effect of SMs are reviewed in detail. Although the conclusion that the aquatic toxicity and human estrogenic effects are found to be increased during the transformation, the transformation mechanisms of SMs in different environmental matrix as well as organisms are still unclear, even that the toxicity of transformation/metabolism products is rarely attempted.The relationship between exposure mode of SMs and damage mechanism of human health is still unclear. In addition, the relative research of the effect on ecological environments and human health of emerging SMs such as macrocyclic musk and alicyclic musk is also deserved to be considered.
Contents
1 Introduction
1.1 Introduction of synthetic musk
1.2 Usage and human exposure
2 Environmental pollution
2.1 Synthetic musk in atmosphere and indoor dust
2.2 Synthetic musk in aquatic environment
2.3 Synthetic musk in organism
3 The transformation process and mechanism
3.1 Biodegradation
3.2 Photochemical degradation
3.3 Advanced oxidation degradation
4 Adverse effects on organisms
5 Adverse effects on human health
6 Conclusion and outlook

CLC Number: 

[1] Schwarzenbach R P, Escher B I, Fenner K, Hofstetter T B, Johnson C A, von Gunten U, Wehrli B. Science, 2006, 313(5790):1072.
[2] Marchal M, Beltran J. Int. J. Environ. Anal. Chem., 2016, 96(13):1213.
[3] Heberer T. Acta Hydroch. Hydrob., 2003, 30(5/6):227.
[4] Krowech G, Hoover S, Plummer L, Sandy M, Zeise L, Solomon G. Environ. Health Persp., 2016, 124(12):A219.
[5] 李卓娜(Li Z N), 周群芳(Zhou Q F), 刘稷燕(Liu J Y), 史亚利(Shi Y L), 蔡亚岐(Cai Y Q),江桂斌(Jiang G B). 化学进展(Progress in Chemistry) 2012, 24(04):606.
[6] Clara M, Gans O, Windhofer G, Krenn U, Hartl W, Braun K, Scharf S, Scheffknecht C. Chemosphere, 2011, 82(8):1116.
[7] 周静(Zhou J). 日用化学工业(China Surfactant Detergent & Cosmetics), 2016, 46(09):530.
[8] Gautschi M, Bajgrowicz J A, Kraft P. Chimia, 2001, 55(5):379.
[9] Lu Y, Yuan T, Wang W H, Kannan K. Environ. Pollut., 2011, 159(12):3522.
[10] Zhang X L, Yao Y, Zeng X Y, Qian G R, Guo Y W, Wu M H, Sheng G Y, Fu J M. Chemosphere, 2008, 72(10):1553.
[11] Roosens L, Covaci A, Neels H. Chemosphere, 2007, 69(10):1540.
[12] Reiner J L, Kannan K. Chemosphere, 2006, 62(6):867.
[13] Homem V, Silva E, Alves A, Santos L. Chemosphere, 2015, 139:276.
[14] Liu N N, Shi Y L, Xu L, Li W H, Cai Y Q. Chemosphere, 2013, 93(9):1804.
[15] Hutter H P, Wallner P, Hartl W, Uhl M, Lorbeer G, Gminski R, Mersch-Sundermann V, Kundi M. Int. J. Hyg. Environ. Health, 2010, 213(2):124.
[16] Wang H, Zhang J, Gao F D, Yang Y, Duan H J, Wu Y N, Berset J D, Shao B. J. Chromatogr. B, 2011, 879(21):1861.
[17] Yin J, Wang H, Zhang J, Zhou N Y, Gao F D, Wu Y N, Xiang J, Shao B. Chemosphere, 2012, 87(9):1018.
[18] Zhang X L, Liang G F, Zeng X Y, Zhou J, Sheng G Y, Fu J M. J. Environ. Sci., 2011, 23(6):983.
[19] Rimkus G G,Wolf M. Chemosphere, 1996, 33(10):2033.
[20] Reiner J L, Wong C M, Arcaro K F, Kannan K. Environ. Sci. Technol., 2007, 41(11):3815.
[21] Duedahl-Olesen L, Cederberg T, Pedersen K H,Højgård A. Chemosphere, 2005, 61(3):422.
[22] Riedel J, Dekant W. Toxicol. Appl. Pharmacol., 1999, 157(2):145.
[23] Yin J, Wang H, Li J G, Wu Y N, Shao B. Food Addit. Contam. A, 2016, 33(7):1219.
[24] Xie Z, Ebinghaus R, Temme C, Heemken O, Ruck W. Environ. Sci. Technol., 2007, 41(16):5654.
[25] Kallenborn R, Gatermann R, Planting S, Rimkus G G, Lund M, Schlabach M, Burkow I C. J. Chromatogr. A, 1999, 846(1/2):295.
[26] Peck A M, Hornbuckle K C. Atmos. Environ., 2006, 40(32):6101.
[27] McDonough C A, Helm P A, Muir D, Puggioni G, Lohmann R. Environ. Sci. Technol., 2016, 50(21):11575.
[28] Villa S, Vighi M, Finizio A. Sci. Total Environ., 2014, 481:27.
[29] Sofuoglu A, Kiymet N, Kavcar P, Sofuoglu S C. Indoor Air, 2010, 20(6):515.
[30] Lu Y, Yuan T, Yun S H, Wang W H, Kannan K. Arch. Environ. Con. Tox., 2011, 60(1):182.
[31] Kubwabo C, Fan X H, Rasmussen P E,Wu F. Anal. Bioanal. Chem., 2012, 404(2):467.
[32] Zeng X Y, Sheng G Y, Xiong Y, Fu J M. Chemosphere, 2005, 60(6):817.
[33] Zeng X Y, Cao S X, Zhang D L, Gao S T, Yu Z Q, Li H R, Sheng G Y, Fu J M. J. Environ. Sci. Health A, 2012, 47(3):389.
[34] Zhou H, Huang X, Gao M, Wang X, Wen X. J. Environ. Sci., 2009, 21(5):561.
[35] Homem V, Alves A, Alves A, Santos L. Talanta, 2016, 148:84.
[36] Meng X Z, Venkatesan A K, Ni Y L, Steele J C, Wu L L, Bignert A, Bergman A, Halden R U. Environ. Sci. Technol., 2016, 50(11):5454.
[37] Hu Z J, Shi Y L, Cai Y Q. Chemosphere, 2011, 84(11):1630.
[38] Lu B Y, Feng Y J, Gao P, Zhang Z H, Lin N. Environ. Sci. Pollut. Res., 2015, 22(12):9090.
[39] Quednow K, Puttmann W. Clean-Soil Air Water, 2008, 36(1):70.
[40] Lee I S, Lee S H, Oh J E. Water Res., 2010, 44(1):214.
[41] Peck A M, Hornbuckle K C. Environ. Sci. Technol., 2004, 38(2):367.
[42] Xie Z Y, Ebinghaus R, Temme C, Heemken O, Ruck W G. Environ. Sci. Technol., 2007, 41(16):5654.
[43] Martinez A, Schnoebelen D J, Hornbuckle K C. Chemosphere, 2016, 144:1943.
[44] Peck A M, Linebaugh E K, Hornbuckle K C. Environ. Sci. Technol., 2006, 40(18):5629.
[45] Lou Y, Wang J, Wang L, Shi L, Yu Y, Zhang M. Bull. Environ. Contam. Toxicol., 2016, 97(1):78.
[46] Huang W X, Xie Z Y, Yan W, Mi W Y, Xu W H. Mar. Pollut. Bull., 2016, 111(1/2):153.
[47] Lv Y, Yuan T, Hu J Y, Wang W H. Anal. Sci., 2009, 25(9):1125.
[48] Musolff A, Leschik S, Moder M, Strauch G, Reinstorf F, Schirmer M. Environ. Pollut., 2009, 157(11):3069.
[49] Arbulu M, Sampedro M C, Unceta N, Gomez-Caballero A, Goicolea M A, Barrio R J. J. Chromatogr. A, 2011, 1218(20):3048.
[50] Li S, Zhu F, Jiang R, Ouyang G. J. Chromatogr. A, 2016, 1429:1.
[51] Silva A R M, Nogueira J M F. Anal. Bioanal. Chem., 2010, 396(5):1853.
[52] Vallecillos L, Borrull F, Pocurull E. Trac-Trend Anal. Chem., 2015, 72:80.
[53] Ziarrusta H, Olivares M, Delgado A, Posada-Ureta O, Zuloaga O, Etxebarria N. J. Chromatogr. A, 2015, 1391:18.
[54] Saraiva M, Cavalheiro J, Lanceleur L, Monperrus M. Food Chem., 2016, 200:330.
[55] Wan Y, Wei Q, Hu J, Jin X, Zhang Z, Zhen H, Liu J. Environ. Sci. Technol., 2007, 41(2):424.
[56] Artola-Garicano E, Borkent I, Damen K, Jager T, Vaes W H J. Environ. Sci. Technol., 2003, 37(1):116.
[57] Bester K. Chemosphere, 2004, 57(8):863.
[58] 李贵梅(Li G M), 项敏(Xiang M), 毕东苏(Bi D S), 陈东辉(Chen D H). 上海应用技术学院学报(自然科学版) (Journal of Shanghai Institute of Technology(Natural Science)) 2010, 10(03):224.
[59] Martin C, Moeder M, Daniel X, Krauss G, Schlosser D. Environ. Sci. Technol., 2007, 41(15):5395.
[60] Tanabe S. Mar. Pollut. Bull., 2005, 50(10):1025.
[61] Butte W, Schmidt S, Schmidt A. Chemosphere, 1999, 38(6):1287.
[62] Canterino M, Marotta R, Temussi F, Zarrelli A. Environ. Sci. Pollut. Res., 2008, 15(3):182.
[63] Zhao X M, Schwack W. Chemosphere, 1999, 39(1):11.
[64] Sanchez-Prado L, Lores M, Llompart M, Garcia-Jares C, Lourido M, Cela R. J. Chromatogr. A, 2004, 1048(1):73.
[65] Neamtu M, Siminiceanu I, Kettrup A. Chemosphere, 2000, 40(12):1407.
[66] Biselli S, Gatermann R, Kallenborn R, Sydnes L K, Huhnerfuss H. The Handbook of Environmental Chemistry, Berlin Herdelberg:Springer, 2004, 3:189.
[67] Ward C P. Doctoral Dissertation of the Ohio State University, 2010.
[68] Gao Y P, Ji Y M, Li G Y, Mai B X, An T C. Water Res., 2016, 105:47.
[69] Santiago-Morales J, Gomez M J, Herrera S, Fernandez-Alba A R, Garcia-Calvo E, Rosal R. Water Res., 2012, 46(14):4435.
[70] Santiago-Morales J, Gómez M J, Herrera-López S, Fernández-Alba A R, García-Calvo E, Rosal R. Water Res., 2013, 47(15):5546.
[71] Li W, Nanaboina V, Chen F, Korshin G V. J. Hazard. Mater., 2016, 304:242.
[72] Ternes T A, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B. Water Res., 2003, 37(8):1976.
[73] Janzen N, Dopp E, Hesse J, Richards J, Turk J, Bester K. Chemosphere, 2011, 85(9):1481.
[74] Fang H S, Li G Y, Yao S D, Liang X M, An T C. Catal. Today, 2017, 281:642.
[75] Ford R A, Api A M, Newberne P M. Food and Chemical Toxicology:British Industrial Biological Research Association, 1990, 28(1):55.
[76] Carlsson G, Örn S, Andersson P L, Söderström H, Norrgren L. Marine Environ. Res., 2000, 50(1/5):237.
[77] Wollenberger L, Breitholtz M, Kusk K O, Bengtsson B E. Sci. Total Environ., 2003, 305(1/3):53.
[78] Parolini M, Magni S, Traversi I, Villa S, Finizio A, Binelli A. J. Hazard. Mater., 2015, 285:1.
[79] Mersch-Sundermann V, Emig M, Reinhardt A. Mutat. Res. Fund. Mol. Mech. Mutagen., 1996, 356(2):237.
[80] Mottaleb M A, Zhao X, Curtis L R, Sovocool G W. Aquat. Toxicol., 2004, 67(4):315.
[81] Lehman-McKeeman L D, Caudill D, Vassallo J D, Pearce R E, Madan A, Parkinson A. Toxicol. Lett., 1999, 111(1/2):105.
[82] Skladanowski A C, Stepnowski P, Kleszczynski K, Dmochowska B. Environ. Toxicol. Phar., 2005, 19(2):291.
[83] Schnell S, Martin-Skilton R, Fernandes D, Porte C. Environ. Sci. Technol., 2009, 43(24):9458.
[84] Randelli E, Rossini V, Corsi I, Focardi S, Fausto A M, Buonocore F, Scapigliati G. Toxicol. in Vitro, 2011, 25(8):1596.
[85] Maekawa A, Matsushima Y, Onodera H, Shibutani M, Ogasawara H, Kodama Y, Kurokawa Y, Hayashi Y. Food Chem. Toxicol., 1990, 28(8):581.
[86] Abramsson-Zetterberg L, Slanina P. Toxicol. Lett., 2002, 135(1/2):155.
[87] Zhang X, Yu Y, Gu Y, Li X, Zhang X, Yu Y. Chemosphere, 2017, 173:417.
[88] Fang H, Gao Y, Wang H, Yin H, Li G, An T. Water Res., 2017, 115:339.
[89] de Lucas N C, Santos G L C, Gaspar C S, Garden S J, Netto-Ferreira J C. J. Photoch. Photobio. A, 2014, 294:121.
[90] Robinson S N, Zens M S, Perry A E, Spencer S K, Duell E J, Karagas M R. J. Invest. Dermatol., 2013, 133(8):1950.
[91] Taylor K M, Weisskopf M, Shine J. Environ. Health, 2014, 13:14.
[92] Li Z N, Yin N Y, Liu Q, Wang C, Wang T, Wang Y C, Qu G B, Liu J Y, Cai Y Q, Zhou Q F, Jiang G B. Chemosphere, 2013, 90(3):1227.
[93] Schreurs R H M M, Quaedackers M E, Seinen W,van der Burg B. Toxicol. Appl. Pharmacol., 2002, 183(1):1.
[94] Zhang Y, Huang L, Zhao Y, Hu T. Chemosphere, 2017, 168:1506.
[95] Mersch-Sundermann V, Schneider H, Freywald C, Jenter C, Parzefall W, Knasmüller S. Mutat. Res. Gen. Tox. Environ. Mutagenesis, 2001, 495(1/2):89.
[96] Kevekordes S, Mersch-Sundermann V, Diez M,Dunkelberg H. Mutat. Res. Gen. Tox. Environ. Mutagenesis, 1997, 395(2/3):145.
[97] Ayuk-Takem L, Amissah F, Aguilar B J, Lamango N S. Environ. Toxicol., 2014, 29(4):466.
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.