中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1437-1451 DOI: 10.7536/PC200688   Next Articles

Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials

Wei Li1,2,3, Ziyu Yang1,2,3, Yanglong Hou1,2,3,**(), Song Gao4   

  1. 1. College of Engineering, Peking University, Beijing 100871, China
    2. Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing 100871, China
    3. Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, China
    4. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Yanglong Hou
  • About author:
  • Supported by:
    National Key R&D Program of China(2017YFA0206301); National Natural Science Foundation of China(51631001)
Richhtml ( 98 ) PDF ( 1557 ) Cited
Export

EndNote

Ris

BibTeX

The research focus of spintronics is to process and store the information by manipulating both the charge and spin degrees of freedom for its advantages of fast device operation, high storage density and low energy consumption. It is no doubt that developing controllable preparation method and magnetism control strategy of two-dimensional (2D) magnetic nanomaterials are of great significance and value for the fabrication of new-type spintronic devices. However, a relatively limited range of 2D magnetic nanomaterials can be achieved yet, and the preparation method as well as magnetism control strategy are relatively unvarying, which greatly hinders the development of this field. In this review, 2D magnetic nanomaterials are first categorized according to the origin of the magnetism, and induced magnetism and intrinsic magnetism in 2D nanomaterials have been introduced respectively. Then the existing preparation methods of the 2D magnetic nanomaterials, such as mechanical exfoliation, electrochemical exfoliation, chemical vapor deposition, liquid-phase synthesis and so on, are summarized in detail. Afterwards, the predominant magnetism control strategies of 2D nanomaterials are highlighted as well. Finally, the bottlenecks and future developments of this booming field are outlined and prospected.

Contents

1 Introduction

2 Classification of 2D magnetic nanomaterials

2. 1 Induced magnetism in nonmagnetic 2D materials

2.2 Intrinsic magnetism in pristine 2D materials .

3 Synthetic methods of 2D magnetic nanomaterials

3. 1 Mechanical exfoliation

3.2 Electrochemical exfoliation .

3.3 Sonication-assisted liquid-phase exfoliation

3.4 Chemical vapor deposition

3.5 Molecular beam epitaxy

3.6 Liquid-phase synthesis

4 Magnetism control of 2D magnetic nanomaterials

4.1 Electric-field control

4.2. Electrostatic doping

4.3 Pressure control .

4.4 Other strategies

5 Conclusion and outlook

Fig.1 (a) STM image of the graphite surface after treatment of Ar+ ion irradiation; (b) The dI/dV spectra measured on the pristine graphite surface and top of the single C vacancy at 6 K[31]; Copyright 2010, American Physical Society. (c) TEM image of superdoped graphene with a high level of N; (d) M-H curves of pristine graphene, N doped graphene without fluorination pretreatment and superdoped graphene measured at 2 K[32]. Copyright 2016, Springer Nature
Fig.2 (a) M-H curves of 5 at% V doped MoS2 nanosheets at different temperatures; (b) FC-ZFC curves of 5 at% V doped MoS2 nanosheets[33]; Copyright 2017, American Chemical Society. (c) M-H curves of monolayer pristine MoS2, Co-MoS2 and (Co, Cr)-MoS2 measured at 300 K; (d) FC-ZFC curves of monolayer (Co, Cr)-MoS2[34]. Copyright 2019, Springer Nature
Fig.3 (a) The crystal structure of CrI3; (b) Optical image of the exfoliated CrI3 nanoflake; (c) The calculated optical contrast map of this exfoliated CrI3 nanoflake; (d) The average optical contrast of the CrI3 with different thickness (the green circles) fitted by Fresnel’s equations (the blue line); (e) MOKE signals of monolayer, bilayer and trilayer CrI3[8]. Copyright 2017, Springer Nature
Fig.4 (a) Optical image of the exfoliated Cr2Ge2Te6 nanoflake and the Kerr rotation images of this area at different temperatures; (b) Hysteresis loop of the six-layer Cr2Ge2Te6 and the Kerr rotation images at zero field after varying the field from different direction[9]. Copyright 2017, Springer Nature
Fig.5 (a) Hysteresis loop of the Hall resistance of Fe3GeTe2 with different thicknesses (left: at low temperature, right: at 100 K); (b) Remanent anomalous Hall resistance of Fe3GeTe2 with different thicknesses as a function of temperature; (c) The phase diagram of Fe3GeTe2 with varied thicknesses and temperatures; (d) The phase diagram of trilayer Fe3GeTe2 with varied gate voltages and temperatures; (e) Hysteresis loop of the Hall resistance of four-layer Fe3GeTe2 under different temperatures and a gate voltage of 2.1 V[43]. Copyright 2018, Springer Nature
Fig.6 (a) Schematic diagram of the electrochemical exfoliation setup for VSe2; (b) Optical images of ultrathin VSe2 nanoflakes on SiO2/Si substrate; (c) Statistical histograms for the thickness and lateral size distributions of the exfoliated ultrathin VSe2 nanoflakes; (d) the M-H curves of the ultrathin VSe2 nanoflakes at 10 K and 300 K[55]. Copyright 2019, Wiley-VCH
Fig.7 (a) Schematic diagram of sonication-assisted liquid-phase exfoliation for ultrathin ferromagnetic α-Fe2O3 nanosheets; (b) M-H curves of the ultrathin ferromagnetic α-Fe2O3 nanosheets at 10 K and 300 K; (c) FC-ZFC curves of ultrathin ferromagnetic α-Fe2O3 nanosheets at 1000 Oe[59]. Copyright 2018, Springer Nature
Fig.8 (a) Schematic diagram of the synthesis of ultrathin metallic MTe2 (M=V, Nb, Ta) nanoplates; (b) AFM images of ultrathin MTe2 (M=V, Nb, Ta) nanoplates; (c) M-H curves of the ultrathin MTe2 (M=V, Nb, Ta) nanoplates at 10 K[10]. Copyright 2018, Wiley-VCH
Fig.9 (a) Crystal structure of V5Se8; (b) The cross-sectional STEM image of 30 ML thick V5Se8film; (c) The evolution of in-plane lattice length with growth time; (d) The ρAH-μ0H curves of V5Se8 with different thicknesses at 2 K; (e) The temperature dependences of the ρAH, sat and ρAH, rem of V5Se8 with different thicknesses[74]. Copyright 2019, American Chemical Society
Fig.10 (a) Schematic diagram of the synthesis of 2D magnetic FeOOH nanosheets; (b) TEM image of ultrathin FeOOH nanosheets; (c) AFM image of ultrathin FeOOH nanosheets; (d) Magnetization curves of the ultrathin FeOOH nanosheets at different temperatures; (e) FC-ZFC curves of ultrathin FeOOH nanosheets[77]. Copyright 2014, Royal Society of Chemistry
Fig.11 (a) MCD signals of bilayer CrI3 as a function of magnetic field under different electric fields; (b) The absolute and relative changes of magnetization as a function of electric field under different fixed magnetic fields; (c) The critical magnetic fields as a function of electric field; (d) The magnetization and the normalized magnetization as a function of electric field at 0.44 T and -0.44 T, respectively; (e) Repeated changing the magnetization by applying a periodic electric field at 0.44 T[79]. Copyright 2018, Springer Nature
Fig.12 (a) Schematic diagram of dual-gate CrI3 field-effect device and the optical images of the devices; (b) MCD signals as a function of magnetic field under different gate voltages and temperatures; (c) The phase diagram of bilayer CrI3 with varied magnetic field and gate voltages; (d) Interlayer exchange constant and critical magnetic fields as functions of gate voltages and doping concentration[80]. Copyright 2018, Springer Nature
Fig.13 (a) Schematic diagram of high-pressure experimental set-up; (b) The tunneling current as a function of magnetic field under different pressures; (c) RMCD signals of bilayer CrI3 before and after pressure (2.45 Gpa) treatment[81]. Copyright 2019, Springer Nature
[1]
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M. Science, 2001,294:1488. doi: 10.1126/science.1065389

pmid: 11711666
[2]
Xu J J, Li W, Hou Y. Trends in Chemistry, 2020,2:163. doi: 10.1016/j.trechm.2019.11.007
[3]
Ramasubramaniam A, Naveh D. Phys. Rev. B, 2013,87:195201.
[4]
Andriotis A N, Menon M. Phys. Rev. B, 2014,90:125304. doi: 10.1103/PhysRevB.90.125304
[5]
Blonski P, Tucek J, Sofer Z, Mazanek V, Petr M, Pumera M, Otyepka M, Zboril R. J. Am. Chem. Soc., 2017,139:3171.

pmid: 28110530
[6]
Tan H, Hu W, Wang C, Ma C, Duan H L, Yan W S, Cai L, Guo P, Sun Z H, Liu Q H, Zheng X S, Hu F C, Wei S Q. Small, 2017,13:1701389.
[7]
Mermin N D, Wagner H. Phys. Rev. Lett., 1966,17:1133.
[8]
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D. Nature, 2017,546:270.

pmid: 28593970
[9]
Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X. Nature, 2017,546:265. doi: 10.1038/nature22060

pmid: 28445468
[10]
Li J, Zhao B, Chen P, Wu R X, Li B, Xia Q L, Guo G H, Luo J, Zang K T, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F. Adv. Mater., 2018,30:1801043.
[11]
O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K. Nano Lett., 2018,18:3125.

pmid: 29608316
[12]
Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J. Adv. Mater., 2019,31:1900056.
[13]
Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernandez-Rossier J, Jarillo-Herrero P. Science, 2018,360:1218.

pmid: 29724904
[14]
Li X L, Lu J T, Zhang J, You L, Su Y R, Tsymbal E Y. Nano Lett., 2019,19:5133.

pmid: 31276417
[15]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004,306:666.

pmid: 15499015
[16]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J. Nat. Nanotechnol., 2010,5:722.
[17]
Zhu Z Y, Cheng Y C, Schwingenschloegl U. Phys. Rev. B, 2011,84:153402.
[18]
Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R T, Lopez-Urias F, Crespi V H, Terrones H, Terrones M. Nano Lett., 2013,13:3447. doi: 10.1021/nl3026357

pmid: 23194096
[19]
Radisavljevic B, Kis A. Nat. Mater., 2013,12:815.
[20]
Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F. Nat. Nanotechnol., 2014,9:682. doi: 10.1038/nnano.2014.167

pmid: 25150718
[21]
Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X D. Nat. Nanotechnol., 2014,9:268.
[22]
Tan C L, Zhang H. Chem. Soc. Rev., 2015,44:2713.

pmid: 25292209
[23]
Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Nat. Nanotechnol., 2014,9:372.

pmid: 24584274
[24]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S, Nat. Nanotechnol., 2012,7:699.
[25]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nat. Chem., 2013,5:263.

pmid: 23511414
[26]
Zhang C Z, Mahmood N, Yin H, Liu F, Hou Y. Adv. Mater., 2013,25:4932.

pmid: 23864555
[27]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013,135:17881.

pmid: 24191645
[28]
Ali Z, Zhang T, Asif M, Zhao L N, Yu Y, Hou Y. Mater. Today, 2020,35:131.
[29]
Mahmood N, Zhang C Z, Yin H, Hou Y. J. Mater. Chem. A, 2014,2:15.
[30]
Palacios J J, Fernandez-Rossier J, Brey L. Phys. Rev. B, 2008,77:195428.
[31]
Ugeda M M, Brihuega I, Guinea F, Gomez-Rodriguez J M. Phys. Rev. Lett., 2010,104:096804.

pmid: 20367003
[32]
Liu Y, Shen Y T, Sun L T, Li J C, Liu C, Ren W C, Li F, Gao L B, Chen J, Liu F C, Sun Y Y, Tang N J, Cheng H M, Du Y W. Nat. Commun., 2016,7:10921.

pmid: 26941178
[33]
Ahmed S, Ding X, Bao N L, Bian P J, Zheng R K, Wang Y R, Murmu P P, Kennedy J V, Liu R, Fan H M, Suzuki K, Ding J, Yi J B, Chem. Mater., 2017,29:9066.
[34]
Duan H L, Guo P, Wang C, Tan H, Hu W, Yan W S, Ma C, Cai L, Song L, Zhang W H, Sun Z H, Wang L J, Zhao W B, Yin Y W, Li X G, Wei S Q. Nat. Commun., 2019,10:1584.

pmid: 30952850
[35]
Li W, Huang J Q, Han B, Xie C Y, Huang X X, Tian K S, Zeng Y, Zhao Z J, Gao P, Zhang Y F, Yang T, Zhang Z D, Sun S N, Hou Y. Adv.Sci., 2020, DOI: 10.1002/advs.202001080.
[36]
Wang Z Y, Tang C, Sachs R, Barlas Y, Shi J. Phys. Rev. Lett., 2015,114:016603. doi: 10.1103/PhysRevLett.114.016603

pmid: 25615490
[37]
Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J, Chen C T, Nat. Mater., 2016,15:711. doi: 10.1038/nmat4603

pmid: 27019382
[38]
Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H. Nat. Nanotechnol., 2017,12:757.

pmid: 28459469
[39]
McGuire M A, Dixit H, Cooper V R, Sales B C. Chem. Mater., 2015,27:612.
[40]
Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K. Eur. J. Inorg. Chem., 2006,8:1561.
[41]
Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K, Fang M H. J. Phys. Soc. Jpn., 2013,82:124711.
[42]
Zhuang H L, Kent P R C, Hennig R G. Phys. Rev. B, 2016,93:134407.
[43]
Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B. Nature, 2018,563:94.

pmid: 30349002
[44]
Lee C, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Science, 2010,328:76.

pmid: 20360104
[45]
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Nat. Nanotechnol., 2013,8:497.

pmid: 23748194
[46]
Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J, Castellanos-Gomez A. Nano Lett., 2014,14:3347.

pmid: 24821381
[47]
Li H, Wu J, Yin Z Y, Zhang H. Acc. Chem. Res., 2014,47:1067.

pmid: 24697842
[48]
Zeng Z Y, Sun T, Zhu J X, Huang X, Yin Z Y, Lu G, Fan Z X, Yan Q Y, Hng H H, Zhang H. Angew. Chem. Int. Edit., 2012,51:9052.
[49]
Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Angew. Chem. Int. Edit., 2011,50:11093.
[50]
Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P. Nat. Commun., 2014,5:2995.

pmid: 24384979
[51]
Dines M B. Mater. Res. Bull., 1975,10:287.
[52]
Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, Huang B B. ACS Nano, 2012,6:1695.

pmid: 22264067
[53]
Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Manh-Huong P, Batzill M. Nat. Nanotechnol., 2018,13:289.

pmid: 29459653
[54]
Wong P K J, Zhang W, Bussolotti F, Yin X M, Herng T S, Zhang L, Huang Y L, Vinai G, Krishnamurthi S, Bukhvalov D W, Zheng Y J, Chua R, N'Diaye A T, Morton S A, Yang C Y, Yang K H O, Torelli P, Chen W, Goh K E J, Ding J, Lin M T, Brocks G, de Jong M P, Neto A H C, Wee A T S. Adv. Mater., 2019,31:1901185.
[55]
Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P, Adv. Mater., 2019,31:1903779.
[56]
Ciesielski A, Samori P. Chem. Soc. Rev., 2014,43:381.

pmid: 24002478
[57]
Qian W, Hao R, Hou Y, Tian Y, Shen C M, Gao H J, Liang X L, Nano Res., 2009,2:706.
[58]
Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013,340:1420.
[59]
Balan A P, Radhakrishnan S, Woellner C F, Sinha S K, Deng L Z, de los Reyes C, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Marti A A, van Aken P A, Varghese O K, Tiwary C S, Iyer A M M R, Ajayan P M. Nat. Nanotechnol., 2018,13:602.

pmid: 29736036
[60]
Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009,324:1312.

pmid: 19423775
[61]
Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009,9:30.

pmid: 19046078
[62]
Kim K K, Hsu A, Jia X T, Kim S M, Shi Y M, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, Kong J. Nano Lett., 2012,12:161.

pmid: 22111957
[63]
Lee K H, Shin H J, Lee J, Lee I, Kim G H, Choi J Y, Kim S W. Nano Lett., 2012,12:714.

pmid: 22220633
[64]
Yang P F, Zou X L, Zhang Z P, Hong M, Shi J P, Chen S L, Shu J P, Zhao L Y, Jiang S L, Zhou X B, Huan Y H, Xie C Y, Gao P, Chen Q, Zhang Q, Liu Z F, Zhang Y F, Nat. Commun., 2018,9:979.

pmid: 29515118
[65]
Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z. Nature, 2018,556:355.

pmid: 29670263
[66]
Wang X L, Gong Y J, Shi G, Chow W L, Keyshar K, Ye G L, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M. ACS Nano, 2014,8:5125. doi: 10.1021/nn501175k

pmid: 24680389
[67]
Shi Y M, Li H N, Li L J. Chem. Soc. Rev., 2015,44:2744.

pmid: 25327436
[68]
Liu B L, Fathi M, Chen L, Abbas A, Ma Y Q, Zhou C W. ACS Nano, 2015,9:6119.

pmid: 26000899
[69]
Wang Z G, Li Q, Besenbacher F, Dong M D. Adv. Mater., 2016,28:10224.

pmid: 27714880
[70]
Vatansever E, Sarikurt S, Evans R F L. Mater. Res. Express, 2018,5:046108.
[71]
Guo H Y, Lu N, Wang L, Wu X J, Zeng X C. J. Phys. Chem. C, 2014,118:7242.
[72]
Wang Y, Sofer Z, Luxa J, Pumera M. Adv. Mater. Interfaces, 2016,3:1600433.
[73]
Fuh H R, Chang C R, Wang Y K, Evans R F L, Chantrell R W, Jeng H T. Sci. Rep., 2016,6. doi: 10.1038/s41598-016-0002-7

pmid: 28442706
[74]
Nakano M, Wang Y, Yoshida S, Matsuoka H, Majima Y, Ikeda K, Hirata Y, Takeda Y, Wadati H, Kohama Y, Ohigashi Y, Sakano M, Ishizaka K, Iwasa Y. Nano Lett., 2019,19:8806.
[75]
Dong B, Ju Y M, Huang X X, Li W, Ali Z, Yin H, Sheng F G, Hou Y. Nanoscale, 2019,11:5141. doi: 10.1039/c8nr09492f

pmid: 30620018
[76]
Zhang X D, Zhang J J, Zhao J Y, Pan B C, Kong M G, Chen J, Xie Y. J. Am. Chem. Soc., 2012,134:11908.

pmid: 22779763
[77]
Chen P Z, Xu K, Li X L, Guo Y Q, Zhou D, Zhao J Y, Wu X J, Wu C Z, Xie Y. Chem. Sci., 2014,5:2251.
[78]
Yang H, Wang F, Zhang H S, Guo L H, Hu L Y, Wang L F, Xue D J, Xu X H. J. Am. Chem. Soc., 2020,142:4438. doi: 10.1021/jacs.9b13492

pmid: 31976663
[79]
Jiang S W, Shan J, Mak K F. Nat. Mater., 2018,17:406. doi: 10.1038/s41563-018-0040-6

pmid: 29531370
[80]
Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J. Nat. Nanotechnol., 2018,13:549.

pmid: 29736035
[81]
Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D. Nat. Mater., 2019,18:1298.

pmid: 31659293
[82]
Dolui K, Petrovic M D, Zollner K, Plechac P, Fabian J, Nikolic B K. Nano Lett., 2020,20:2288.

pmid: 32130017
[83]
León A M, González J W, Mejía-López J, Lima C F, Morell E S. 2D Mater., 2020,7:035008.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[3] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[4] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[5] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[6] Xuanyu Liu, Xiaoting Zhu, Shuaishuai Ding, Rongjin Li, Wenping Hu. Organic Spin Valves and Their Magnetoresistance Effect [J]. Progress in Chemistry, 2019, 31(9): 1199-1212.
[7] Ze Feng, Dan Sun, Yougen Tang, Haiyan Wang. Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Progress in Chemistry, 2019, 31(2/3): 442-454.
[8] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[9] Wenhao Yao, Fei Yu, Jie Ma. Preparation of Alginate Composite Gel and Its Application in Water Treatment [J]. Progress in Chemistry, 2018, 30(11): 1722-1733.
[10] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[11] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.
[12] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[13] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[14] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[15] Tang Yuanyuan, Xu Jia, Chen Xing, Gao Congjie. Core of Forward Osmosis for Desalination——Forward Osmosis Membrane [J]. Progress in Chemistry, 2015, 27(7): 818-830.